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CHAPTER I

IntroductiOn

1.1. Rationale.

In many areas of commiunication engineering, such as radio and

television broadcasting and satellite communications, one is con-

cerned with the transmission of several signals (functions) through

a "channel." Since it is inefficient to transmit one signal at a

time over the channel, it is natural to ask if it is possible to

"reconstruct" a continuous-time signal from its samples under cer-

tain conditions on the signal and the sampling scheme. If the answer

is in the affirmative, one may transmit only the samples of the

signal, thus occupying the channel only at the instants of sampling.

Between these instants the samples of other signals can be transmitted.

Another interesting application of "sampling" is in the field of

sound recording (see, e.g., Vitushkin, 1974). The most widely used

technique is the analogue method where the signal is recorded without

any preceding transformations. However, the signals recorded by this

method suffer distortion due to the defects of recording and repro-

duction devices. A more promising method of recording is called the

digital recording technique. By this method, the signal is first

transformed into a discrete code. In other words, the signal is

sampled and the samples are coded; then the code of the signal is

recorded, and finally the discrete code is read off the recording and

is transformed into its continuous-time form in order to reproduce

the signal. More precisely, the signal is reconstructed from the
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(decoded) samples read off the recording. This technique has been

recently employed with remarkable results.

Clearly, sampling representations and approximations are very

significant in communication and information theory, especially in

the era of digital computers.

1.2. Sampling Representations.

The sampling representation (expansion, theorem)

(1.2.1) f(t) = f)sin (2Wt-n)
n=-

was originated by E.T. Whittaker (1915). J.M. Whittaker (1929, 1935),

Kotelnikov (1933), Shannon (1949), and others have studied extensively

the sampling theorem and its extensions in developing communication

and information theory. For a review of the sampling theorem, see

Jerri (1977).

A function f which can be represented, for some W0 > 0, by

(1.2.2) f(t) f WO e27rituF(u)du , tER 1 ,
-WO

is called L1-bandlimited to WO if FeLI[-W0,W0], and is called conven-
tionally or L2-bandlimited toW 0 if F L2[-W 0,W0]. In both cases the

sampling representation (1.2.1) is valid for all W > W0 . he series

in (1.2.1) converges uniformly on compact sets for Ll-bandlimited

jfunctions, and for conventionally bandlimited functions it converges
in L2 (IR I ) as well as uniformly on IR1

In reconstructing a function (signal) f from a periodic set of

samples (sampling at a constant rate), errors of the following types

may arise:
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(1) f is bandlimited but it is observed only over a finite

interval, and hence only a finite number of samples can be used for

its reconstruction. This type of error is called a truncation error.

(2) f is bandlimited, but there are observation errors, so

that the observed samples are not f(V) but f(sW) + En' wee{n

are random variables.

(3) f is not bandlijuited (or not bandlimited to the frequency

it is sampled at), and yet a reconstruction of the type of the

sampling theorem is attempted.

1.3. Summnary.

In this study the samples are assumed to be error free, and only

errors of type (1) and (3) (possibly combined) are considered. Further-

more, the area of inquiry is limited to constant rate (or uniform)

sampling schemes. It should be mentioned, though, that non-uniform

sampling schemes, as well as randomn sampling schemes, are of consider-

able interest in communication and information processing.

Chapter 11 deals with sampling approximations as well as error

estimates of functions and stochastic processes which are not band-

limited. In Section 2.2 a sampling approximation is derived for

processes which are not necessarily weakly stationary. In Section 2.3

the rate of convergence in the finite sampling approximation for time

limited processes is estimated; the convergence holds both in the

mean square sense and with probability one. Finite sampling approxima-

tions for functions which are Fourier transforms of finite measures

are derived in Section 2.4, along with error estimates under various

conditions. These results are then extended to various types of
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stochastic processes. In Section 2.5 Walsh functions are used to

derive sampling approximations for functions which are not necessarily

continuous and for processes which are not necessarily mean square

continuous, as well as error estimates under further conditions.

In Chapter III we turn to the problem of sampling expansions of

bounded linear operators acting on various classes of bandlimited

functions and stochastic processes. The merit of these representations

lies in the fact that the image of a function under the operator is

expressed or represented in terms of the samples of the function

rather than the samples of its image. Section 3.2 deals with bounded

linear operators acting on classes of functions bandlimited in the sense

of Zakai (1965) and of Lee (1976a), and Section 3.3 considers bounded

linear operators acting on classes of functions with wandering spectra

in Lloyd's sense (Lloyd, 1959).

Finally, in Chapter IV, distributions and random distributions are

considered. Section 4.3 deals with sampling representations for dis-

tributions with compact spectra and shows that a distribution with

compact spectrum can be reconstructed using samples of its Fourier

transform (regarded as a function). In Section 4.4 similar results

are derived for certain types of random distributions.

1.4. Notation.

The n-dimensional Euclidean space is denoted by IRn, n a 1,

and the complex numbers by C. The class of all absolutely integrable

or square integrable functions on IRn, with respect to the measure ji

is denoted by L1 (p) or L (), and when the measure is Lebesgue

measure by Ll(IRn) or L2 (Rn). The complement of a set A is denoted

by Ac. Finally, the symbol 0 is used to signal the end of each proof.
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CHAPTER II

Sampling Approximation for Non-Bandlimited

Functions and Processes

2.1. Introduction.

In this chapter we consider the problem of deriving sampling

approximations and their rate of convergence for functions and stoch-

astic processes which are not necessarily bandlimited. The merit of

these approximations lies in the fact that in many practical engin-

eering systems, such as causal systems and time-limited systems, the

signals under consideration are not bandlimited. It is thus of

interest to consider non-bandlimited signals.

*I In Section 2.2 we derive a sampling approximation for stochastic

processes which are not necessarily stationary or bandlimited.

Section 2.3 deals with the rate of convergence in the finite sampling

approximation for time-limited stochastic processes. In Section 2.4

a finite sampling approximation is derived for functions which are

the Fourier transforms of finite signed measures, as well as the rate

*of convergence. This result is extended to weakly stationary,

harmonizable, and certain stable processes. In Section 2.5 a sampling

approximation using Walsh functions is derived for functions which are

not necessarily continuous and for processes which are not necessarily

mean-square continuous.
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2.2. Sampling Approximations for Non-Stationary Stochastic Processes.

In this section we prove the stochastic process analogue of the

sampling approximation theorem proved for (deterministic) non-band-

limited functions of one variable by Brown (1967). The n-variable

version of Brown's result is stated below as Theorem 2.2.1

1 2,rituFor fixed tcIR and W > 0, denote by e., t the 2W-periodic

2witu
extension of the function e2 i  -W < u < W, to the real line. Its

Fourier series is given in the following well known result.

'11
Lema 2.2.1. For any fixed tEIR1 and W > 0

2 itu 7riti W usin 7r(2Wt-n) (~.()
Se. - e i (2Wt-n) (~.()

and the Fourier series converges boundedly.

Theorem 2.2.1. (Brown,1967). If FELl(]Rn), and f(t) =

f F(u)e27i'di (u), tEIR n , where tu = tlul+...+tnUn , and: n

dn(u) = dUl...dn then for each tIRn and W > 0,

O k k n sin 7r(2Wtj-k.)fw(t): =k,.,n - f  "" jl 2t-j

2n 2 tuF~udp= n eW r n(U)

2ffitu =n 2ffit .u.
where ew le1 , and

j;1

If(t) fw(t)I S 2nf IFidn
AW)

i'a
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wher A(W fucR nIujjI W; j=l,2,...,n). Thbus for each tE]R n

f( .t) urn fw(t)

nIf, in addition, for some W > 0, F(u) =0 for almost all ueIR with

Iuji > W, j=l,2,...,n, then we have the classical sampling expansion

f(t) fw(t)

The following will be needed in stating the stochastic process

analogue of Theorem (2.2.1). Let {x(t), tEIRI be a second order

mean square continuous stochastic process with correlation function

*IR(t,s) = E[x(t)i-(s)]. Assume that REL 1(1R 2) and Rt(-) R(t,-)EL 1 (]R1).

The Fourier transform of R is denoted by

R~u2v) u-vEIR
'1~v =f R(t,s)e Iit~vdtds 1~eI

Since R is continuous and Lebesgue integrable on JR 2 it is also
2I

Riemann integrable on IR , and thus the quadratic mean integral

y(u) = R fx(t)e - 2Iritudt ,UCIR 1

exists and defines a mean square continuous stochastic process (since

E[y(u)y-(v)] = Ri(u,-v)is continuous in both u and v). Since RtEL (]R)

jfor all tERI, its Fourier transform

R t(V) f R t(s) e - 2 1Tisvds , vERl

is well defined for all teIR 1. In fact, Rt(v) =E[x(t)y(-v)] for all

t,vEIR 1, and since both x(t) and y(v) are mean square continuous, then
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R(v) is continuous in both t,v. Now we also assume that ReL1 (R 2),
and R(.,v)cL (IR I ) for all vEIR1. Since Rt(v) is continuous in both

t and v, it follows that

=t(v) f R(u,v)e tdu

for all t,vcIR1. Hence

IRt(v) dil(v) ff IR(u,v)Idudv <

for every tEIR 1 , i.e. Rt(v) is a continuous function in both tv, and

is integrable with respect to v for every tc]R 1

Remark. It should be noted that if ReL 1 (]R 2) and R(t,s) > 0 for

all t,seIR1, then the condition RtELI(]R1) is satisfied for all tEIR1 . '

Indeed, the two conditions, RELI(IR and R is continuous on JR2

imply th e Riemann integral RfJR(t,s) exists and is finite. It

follows that the Riemann mean integral RfE[ .-(s)jds exists and is'1

finite, and

E[f.Rfi(s)ds] = RfEf[.xi(s)]ds

Taking E = x(t) gives that for each tlR1  the Riemann integral

RfR(t,s)ds exists and is finite. Since R(t,.) _> 0 for all tcIR 1,

-; it follows that the integral exists as a Lebesgue integral as well,

i.e.

JJR(t,s)jds < ® for all teIR 1

We now establish the analogue of Brown's result (Theorem 2.2.1)

for a non-stationary (non-bandlimited) second order stochastic process.
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Theorem 2.2.2. Let {x(t), teIR 1I be a second order mean square

continuous stochastic process with correlation function R. Assume

that RELI(IR2 ), R(t,.)EL(IR1) for all tEIR1 , and RLI(IR

R(o,v)ELl(R 1 ) for all vEIR1 . Then for each fixed teIR1 and W > 0,

(22x) n ~ sn f(2Wt-n) f 2itu

(2.2.1) Xw(t): = L V i y(2Wt-n) e y(u)du
n= -O

where the equality is a.s., the series converges in quadratic mean,

and y(u) is defined by the quadratic mean integral

y(u) = Rf e-2 itUx(t)dt , u-ER 1

Also for each tElR1 and W > 0, the error

(2.2.2) 2(t): = E2x(t)-xW(t)2< 4 f f IR(u,v)Idu dv

el ul>W jvf$

and thus for each tEIR1 ,

(2.2.3) x(t) lim xw(t)

is quadratic mean. If, in addition, R(u,v) = 0 for almost all

Jul, lvi > W, for some W > 0, then x(t) = Xw(t), which is the classi-

cal sampling theorem for non-stationary bandlimited processes.

,w i roof Letus dnotesin n(2Wt-n)
Proof. Let us denote -r(2Wt-n) by gn(t;W). It has already1 been noted that the quadratic mean integral y(u) defines a mean

square continuous stochastic process with correlation function

E[y(u),(v)] f= R(u,-v). Also, the quadratic mean integral

2Zlitu 1
Re y(u)du , teRn exists since the integral
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ff eW't eW-fftE[y(u)F(ir)]du dv

exists (and is finite) as a Riemann and as a Lebesgue integral (for

R(y,v) is continuous and Lebesgue integrable on 1R2 ). Let

2(x( n IN

(t;W) El W) -Rf 2ituy(u)du,2
N _ x) gn(t;W - R

N N

=-- m-- 2W I( )g(t;W)gm(t;W)
nN m=-Ntu[

I gn(t;W) Rf eW ' 11 Ex(.*)-y(u)]du
n= -N

N 27witu - n
I gn.jt;W) RJ e.# E[x()y(u)] du

n=-N

(2.2.4) + EliIR i~~ucj 2

We notice that

EII 27rituy (uu 2 
= 71itu -21titvft(u -vdud

* rrf 2iritu 2,TitvA
Re# eW R(u,v) du dv

Since R is continuous and Lebesgue integrable, then by Theorem (2.2.1)

N N 2rt ,iv
n-N =-N-f eWit e RN(u,v)du dv.

Since R n is continuous and integrable, we have

N=-



N i u UR v

= I' e gnn(t;-W)]N t  R(u,v)du dv
B--N

27ritu 21ritvS->ff eW R(u,v)du dv

where we used Lemma (2.2.1) and the dominated convergence theorem.

Similarly the same is true for the third term in expression (2.2.4),

21and thus eN(t;W) - 0 as N - for all tEIR l , W > 0, proving (2.2.1).

To prove (2.2.2), we have

2 f 2witu 2

eW(t) Ejx(t) -RJ eW y(u)duI

= R(t,t) - Rf e 27TituE[x(t)y(u)]du

- Rf e7itv E[x(t)y(v)Idv

(2.2.5) + e U -rit u eW2 '
it v R(u,-v)du dv

But

-21itUE[x(t)-(u)Idu = f 2 it  (-u)du

= ff2rt 2iritv .'
- e R(u,v)du dv

* and similarly for the third term in (2.2.5). Hence

2 2r tu 2itv .e2rtitue 2itv -e2witu 2witve,(t) Jf(e e -eW ee eW

2eitu 27itve. eW ) R(u,v)du dv

(2.2.6) = ff (e2 itu - itU 2itv - R(u,v)du dv

21Titu -
27itv ,weotiNow the inequality lei t  e Itv 2, we obtain

-Ak



12

2e~(t~f R(u,vldu dv
j,jvj>W

proving (2.2.2), and (2.2.3) follows from the fact that cL2(]R2).

0

Remark. Theorem 2.2.2 holds for multiparameter processes

{x(t), tEjRn}, n 2 1.

Remark. The bound in (2.2.2) may be written in a different

form as follows. From (2.2.6) we have

2 Ziritu -2witu 21titv 2iritveW(t) s ffle eW le - eW t-IR(u,v)ldu dv

= 4 1 Isin 2wkWtl.lsin 21jWt-II(u,v)ldu dv
k,j=-co

The term k = 0 = j is always zero, so that only the integral of IRJ

over the remaining squares enters into the sum. Also, for any integer

n, WCI) = 0 and thus x(-)= xw(). .

2.3. The Rate of Convergence in the Finite Sampling Approximation

for Time-Limited Stochastic Processes.

Butzer and Splettsto3sser (1977) derived a sampling approximation

for time-limited functions which, in fact, is a special case of

Brown's result (Theorem 2.2.1), and determined the rate of convergence

of the approximating series under certain conditions. These results

are summarized in the following theorem.

Theorem 2.3.1. (Butzer aid Splettstbsser, 1977). Let f be a

continuous function defined on R1 such that, for some (fixed) T > 0,

f(t) 0 0 for all It[ > T and fcL (R). Then
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NC si t7Q -n) 1
(2.3.1) f(t) = im N(,)Zt-n) te 1R

W-*o n--N (W) Titl

where N(W) = [2WT1, the largest integer less than or equal to 2WT.

If, in addition, f(r) cLip a, 0 < a : 1 for some (fixed) re{l,2,...J,

with constant Lr, then for W > r+1

ft)-NfW)
if(t) N? nN f (_A., sin ir(2Wt-n)

n=-N(W)(Wt-n)

(T+I) Lr 1 1
(2.3.2) rrctl , tcR

2rl(r+al1) Wr%-

Here Lip a, 0 < a 5 1, is the Lipschitz class of continuous

functions f on J 1 for which there exists a constant 0 < L < - such1I
that sup If(t+h)-f(t)I 1 LlhJa , heR

t~ JR1

The following result is the analogue of Theorem (2.3.1) for second

order processes which are not necessarily stationary. First we intro-

duce some notation. Let C(1R 2) be the class of all continuous functions
on IR2, and IIRII = sup JR(t,s)l. Let Lip(2)a, aE(0,1], be the class

tsLR1

of all functions RcC(R 2) for which there exists a constant 0 < L <

such that

IIAhgRI 1 Ljhjajgja , h,gc]Rl ,

where Ah,gR(t,s) = R(t+h, s+g) - R(t+h,s) - R(t,s+g) + R(t,s). The

first modulus of continuity is defined by

w1 (6,X;R) = supIIAhgRII: Ihi - 6, IgI s X)

where 6 > 0, A > 0. Similarly, the r-th modulus of continuity of R, r is

a positive integer, is defined by



14

ivhern r rr

AR(t s) = (..l)k (k)(,)R(t+cl, s+19)

It should be noted that for cac(0,1],

Theorem 2.3.2. Let x - {x(t), t-EIR 1 be a second order mean-square

continuous stochastic process with correlation function R such that,

for some (fixed) T > 0, R(t,t) = 0 for all Iti > T (time limited

process) and R.EL (1R ). Then for all tc]R1 and W > 0,

2NW x( n) sin w(2Wt-n),2
e,(t): =Ejx(t) - n=-N(W) 2 r(~ n

(2.3.3) !5 4f f IR(u,v)Idu dv
Juj ,IvI>W

and thus

(2.3.4) x(t) = him NfIV) n sin w(tn)
W-a n--N(W) x W 7rWt-n)

in the mean square sense, where N(W) =[2WT]. If, in addition, for

some positive integer r and some ae(0,l],

a 2rR(t,s) (2)~~c

atrasr

with constant Lrl then for every tcEIR 1 and W > 0 we have

2 L r r+1 2 1

(2.3.S) eM 5 2 
2(r+a irr+xl) 2 (2TI + W2 r -,1

Proof. (2.3.3) and (2.3.4) are special cases of (2.2.2) and

(2.2.3). To show (2.3.5) notice that, for all u,v 0, we have



_I~ +N u~v J R~ + Sn m e2ni(tu+sv) dt ds,

and thus for all u,v > W

2(r+l)A r+l r+1l l2 R(u'v) I I (rnl)(rml)R(u~v)

T T r+l r+l ri ~

f f I 0n m

2W 2W

R(t + -- + m e2iri

T A R)(tu -sv7rdtu~
~Tr~ -- ~l{r+l Rts) }e 211t+Vdt ds,

which yields the inequality

2 (r )T T r1
* 2 (l)R() f~ I Ar 1R(t,s)Idt ds

2W 2W

r+1 2 1 _

20 ~'r+lrn I N

32r Rts 2
Now since a ras) E Li p (2) it can be easily shown that, for any

positive integer j,

W .(6,X;R) 6 6r Ar w.6 , 32r R(t,s))
r+j r 3  srjand hence for all u,v > W

,(2.3.6) IR(u,v)IS 2 (+) (2T + 2)1

From (2.3.3) and (2.3.6) we have r 2 Z~~l(v
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2e,(t) -i 4 f 1 Jfuv)ldu dv
lul ,IvI>W

2r)L)r (2 f d)
u>W U

2 22 r~a- 'L (2T + r+1 2 1 1
r (r+a-1) 2 W 2(r+a-1)

r 2(2T + r~ 2 (rc

proving (2.3.5).

Under the conditions of Theorem .2.3.2 the approximating

sequence xW(t), in fact, converges to x(t) with probability one for

each fixed tEIR. The rate of convergence is given in the following

* corollary.

* I Corollary 2.3.1. Let x be as in Theorem 2.3.2 and assume that

r l1whenl1/2< a <l1and that r a2whenO0< a :l/2. Then for a

separable version of x and each tc]R 1,0

(2.3.7) WY sup 2W~t - t x(t)n' 0a. s. asW0 .we
W>W0  n=-N(W)

3
where 0 < y < r+a -

Proof. Consider a separable version of x. For W a 1 put W-1

and for each fixed teIRn define Xu , uc[O,lI, by

Xu ={x(t) , U -0
xt , 0 < u 5 1,

UU
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(in u). From (2.3.5), we have

EtXo-Xu 2  EIx(t) xw(t)I2 < CuI+5

2(ra-) ( 2r -2

where C =2 ((r+al1(2T+l) L (r+a-1) " 2 and 0 = 2(r+a) 3 > 0. Thus,

by Kolmogorov's theorem (see Neveu (1965, p. 97)),

1sup IXo-Xuj 0a.s. ash+
hY O<u<h2'

1

and (2.3.7) follows by putting h =

2.4. Finite Sampling Approximations for Non-Bandlimited Functions

and Stochastic Processes.

Theorem 2.2.1 (the case n = 1) states that, if f is the Fourier

* transform of an L1 (]Rl)-function, then the infinite sum

: Z~ f( n) sin 1(2Wt n)

S(2Wt-n)'1 n- -®

converges to f(t) pointwise everywhere as W - . It is of practical

interest to investigate the possibility that a finite sum of the

form
~~~~NfW) f()snI W-n)

~~(2.4.11.W )  f i(tn }

where N(W) is a positive integer-valued function of W > 0, would

converge to f(t) under suitable conditions on N(W), and also to

determine the speed of convergence. Such a result is obtained in

Theorem 2.4.3 , and its analogue for an appropriate modification

of the finite sum (2.4.1) is obtained in Theorems 2.4.1 and 2.4.2
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and then extended to weakly stationary, harmonizable, and certain

stable processes. In all these results N(W) is required to tend to

infinity, as the sampling rate W tends to infinity, fast enough so

that NM
w

Theorem 2.4.1. If f is the Fourier transform of a f inite

signed (or complex) measure jj on the Borel sets of the real line,

i. e,.,

(2.4.2) f(t) = e27itudi(u) , te 1 ,

and if N(W) is a positive integer valued function of W > 0 such that
N (W) as W * w, then for each tEIR 1

w

(2.4.3) f(t) = Jim N ( - nI) f( ) sin WW-t-n)
W- n=-N(W) N OV).lz i (2W-tn)'

and the convergence is uniform on compact sets.

Proof. Consider the error

*Nfw) -. n sin n (2Wt-n)

n=-N(W) Nt V7(2Wt-n) [

f . e 27it udu N fW) (i 4n f-+~ OD eu r Ud u

- n= -N(W)

sin f(2Wt-n .

" +t2 t-n) Ilu~f le NeW
_00 n='-N(W) NM -



19

002rt -NW+ N(W) k Tri Wu 1

=_ k=O n=-k-wVi1iU

f le 27t eNF~z Wto e d] Idl il (u)

W e27ritu 1 2nWe itv 1 ) i)
200W f )1k=O n=--k IvdiIu

f=0 e 2itu 1 W2TitvKN(W)( Y)dv d lI(u)
- 2 2W

[j2IiU e2rit(2Wx+u) KN( xdxdia u
_k U

" 2W

fl 2 2i4tfeTiWtxlN(Wx)dKIN()
-00_ U

- 2W

w1 N k -2inx _ 1 .sin (N+l)x i

where KN(X) =+ ZYk= 0 ln=-ke - N-i-i sin nx

1Fejer kernel. Since IpI( ) < - (see Rudin (1974), p. 126), given

c > 0, there exists an a = a(E)E(0,-) such that if A = [-a,a], then

II(Ac) < Since KN - 0 is periodic with period 1 and

J2 ,N(x)dx = 1, (2.4.4) can be written as

(2.4.5) eW(t) < 2 1 CI(Ac) + II (A)QN(t,W) - £ + IA (IR')QNCt,W)

where u

(2.4.6) QN(t,W) s up 1 - 2 4rriWtxK xd" e NM
:,yI2•
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-y - -y

By writing f h = f + f + )5- , (y 4 V ,we obtain
-h-y -h-y -h

QN(tW) fi 32 fe~_ 4iWtx KN(W) (x) dx
2

SUP f e4 iW (x)dxlul al. u4 +u N(W)

tulsa ____

(2.4.7) + SUP If e47iWt x  (x)dx
l ul<a. lul+u N(W)

- - 4W

Let us denote by Ik(tW), k = 1,2,3, the three terms on the right
hand side of (2.4.7) in the order they appear. For 12(t,W) we have

+a2W
12 (t,W) : a KN(W) (x)dx

-22 f KN(W (x)d .
=2 W

3-- 2~2
But for 0 < x KN(x) 2 9(N+)x2  where C(= -) is a constant

(see Zygmund (1959), p. 90) and thus for W > a

2(tW) 2 2
, "t [N(W)+1J . ax

-2C

it N(W)+lj
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22C 2a -0a

2[N(W)+1] asW

Similary,

!5t < 2C 2a3('W -f2 [N(W)+I] T as -

Now for Ii(t,W), using the fact that f"KN(x)dx = , we have
0

2
11(tW) = 2 f (1 - cos 4 rWtx) K O )(x)dx

Choosing any 6(W) such that 0 < 6(W) < and 6(W) = 0(. ), we

obtain

I(t,W) = 2( + (1 - cos 47rWt)KN(w)(x)dx0 6(W)J

Since for all x, KN(x) s 2N+I (see Zygmund (1959, p. 90), then

6(W)
f (1 - cos 4ffWtx)KN(W)(x)dx ! 2[2N(W)+1I]6() - 0 as W-
0

Also
2f,(1 - cos 47WtX)KN(w) (x)dx = 2 f sin 27rWtx • -KN(W) (x)dx

6(W) 6(W)

2C - 2 1
_ f sin 2 wtx-- 7 dx

7 [2N(W)+1] 6(W) x
'9r

4CWtl 2Wjtj y

2CItl N(W)+ o as W

Notice that this is the only bound which depends on t and that the

dependence is linear in Iti. It follows that for W > a,
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(2.4.8) QN(tW) : 2 8aC + 2[2N(W) +]6(W) + 2CjtW
2 8 t [N(W)+I (W-a) NOV)+l

and thus QN(t,W) - 0 as W . Hence, for each fixed t and c > 0,

we have by (2.4.5) that lira sup eW(t) 5 c which implies that ew(t) 0
Wa

as W . It is clear from (2.4.8) that the convergence is uniform

on compact sets. 0

The following theorem gives a more concrete bound on the error

committed by considering only a finite number of samples in reconstruc-

ting a function which has the representation (2.4.2).

Theorem 2.4.2. Let f,p,W,N(W), and eW(t) be as in Theorem

(2.4.1). Then for an arbitrary (but fixed) W > 1 and every

!tJ < with t -R, nEdN = {0, + 1, + 2,...) we have
< 2W

(2.4.9) eW(t) < 21pl(iRl)[ltt + -sin 2WtI ]N- + 21plI{IuI>W-l}

Proof. Fix W > I and t j , ned. From (2.4.4) we have

-CO

where

N'W) (1nu
(2.4.11) HN ,w (tu) = 2 1tu (I + W

n=-N(W)

sin 7(2Wt-n)7r (2Wt -n) "

If A(W) = [-W+l, W-1], then the inequality (2.4.10) may be written

as
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(2.4.12) e11$t) : ( f + f )IHNW(tu)dIII~u)
A(W) AC(W)

By (2.4.4) we notice thtIHNWh(t,u)I 11 _ k(/We4r~x'()xdl
that = - -(u/2W)

anld thus IHN~W(t,u) 1 : 2 for all tEIR, uEJR , N : 1, and W > 0.

From (2.4.12) we obtain

(2.4.13) ew,(t) s f IHNqW(t,u)ldIlj(u) + 21111(Ac(W))

!5 II(IR I)PN(t,W) + 21111(Ac(W))

where PN(tW) = uPW IIN W(t'u) I

* Now consider the integral

2WIzI e2Twiuz NW
NWtu= 7iN(W)+1(z-t)sin 2Wz dIt, 2W

CNW

wher , {zcC: IzI = 1 .()+] From Cauchy's residue theorem,
we have

(2.4.14) I (t~) = 1 - 2itI
N,W~tu N(W)+1 sin 2irWt

n

Kn=--N(W) N(W)+1 2W-t

and thus from (2.4.11)

* ~HNpW(tu = N(W)+j e' +sn2t*N,W(tlu) Iti < N(W

Hence
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2WI t I2_ w '
(2.4.15) IHN,w(t,u)[ < I N- + {sin 22WtW *IN,W(tu)I, It< 2W

Since e2 iuz is an entire function of exponential type 2wtul, then

from a result by Piranashvili (1967) we have for ucA(W) that,

1 4 WIN,W(t'u)l !5 2[N(W)+I] n(l-e-ff)N(W) U'Z-l

and from (2.4.15), that for W > 1

IHN(t,u) < 2Wtl + 2W sin 2irWtI 1 ueA(W) Itl <N)

- N(W)]2 (W-uI) ' ' < 2W

and hence for W> 1 and -!-# t <It,

(2.4.16) PN(t W) <N + 2W sin 2 WtiPN ( I ) !5N(W 7r(1 -e"-7) [N (W) ]z

Thus from (2.4.13), we obtain

1 + i 2nrWtj 1.IAO
eW(t) < 21pl(Rl)[ItI + {sin2l(AC()

(l-e )N(W)

forW > 1 and- W# It! < , n-E . 0

Remark 2.4.1. We now comment on the two bounds obtained in

Theorems 2.4.1 and 2.4.2 . From (2.4.5) and (2.4.8) in the proof of

Theorem 2.4.1 we have,

eW#(t) 2jj{IuI>a} + 2Ihl(1 )1C tw  + 4Ca
N ]2[N(W)+I](W-a)

+ [NCW)+II6(W) )
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zl2j{luI>aJ + 21+l( ) (tl a

+ N (W) [NQ9 +11 6(W) j W

=: BI(t,W)

for all W > a and tEIR. From Theorem (2.4.2)we have that for each

fixed W > 1 and t with InL  It] <2W2W W

ew(t) -< 2j1il{Iul>W-l1} + 21l(IRM){tl + Isin 2Wtl N-
7(l-er)N()

B2(tW)

k 712

In the bound B1, C could be taken to ber-and 6(W) may be chosen as

small as desirable so that the fourth term in the expression of B1

may be omitted (since it can be made arbitrarily smaller than the

other three terms by an appropriate choice of 6(W)). The bound B1

'1 has the advantage over the bound B2 of holding for all tdIR
1  It

should be noted that even though for each fixed t, Bl(t,W) 0 as

W , for t's large relative to W, namely for Iti > -1 N )+l

the bound B1 (through its second term) is larger than Iv[ (1R 1) which

is an upper bound on jf(t)j. Large as this bound on the error may

seem, there is no smaller bound available for such t's and, in fact,

it seems quite likely that at least for certain t's the approximationI error would be of the magnitude of If(t) I. The bound B2 holds only

on the interval ItI < V excluding the sample points -S (at which

we know anyway that the approximation error eW(t) vanishes). However,

it has the following advantages over the bound B1. It contains one

term which vanishes at the sampling points and is thus very small near
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the sampling points; thus the bound B2 is more sensitive than B1
near sampling points. Also, the second term of B2 is always smaller

than the second term of B1 , and putting a - W-1 to equalize the

first term of both bounds, it is easily seen that the third term of

B2 is always smaller than the third term of B1 . In conclusion, in

the restricted region where it holds the bound B2 is lower and more

sensitive to the location of the sampling points than the bound B1 ,

while, of course, B1 provides a bound even where B1 does not hold.

A typical plot of the two bounds for fixed W > 1 (and a = W-1)

is as follows.

tp

0 A__ _ , 4 -- o

2W2W2W 2W 2W 2W
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V Under further conditions a. function of the form (2.4.2) can be

approximated by the simpler finite sums in (2.4.1) rather than those

in (2.4.3).

Theorem 2.4.3. Let f be the Fourier transform of a finite signed

(or complex) measure p, on the Borel sets of the real line, which

satisfies

(2.4.17) f 4(u)djiu(u) <
-00

where ¢ is a symmetric non-negative function, strictly increasing on

(0,o), and such that 0(u) - w as u w. Let N(W) be a positive

integer valued function of W > 0. Then for an arbitrary (but fixed)

W > 1, and Iti < N(W)such that t -n , ncdN, we have

NI - W) sin w NWn )
:

1+1n it[Nm+ Lj I Isin 2TrWt W Bt,)

(2.4.18) 5 2 1! j[ OW) }¢cw + 4 1 julcm)Ice. t: BTt,W),

where D(W) = f *(u)dliI(u). If, in addition,

W(i) co) - as W - a, and

(ii) NMW O(e cONW' l ) for some c > 0,

the fr lltc]R 1 B~t,W) 0 arnd eW~t )  0 as W*then for ali Z : ::frI 7 l~
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Proof. Fix W > 1 and t ,nEN . As in (2.4.4) we obtain

f ( + f )IGN W(t,u) IIIIl (u)
AMW AC(w)

where A(W) [-Wq+1, W-1] and

(2.4.20) GN,w(t,u) e e27Wtu - W e WU sin Utn

Also as in the proof of Theorem (2.4.1), we notice that

2- U

IN,W(t'u)I !5i- ~ eWW N(W) xI
DudX

where DN) e= -2linx sin 7r(2N+1)x is the Dirichiet kernel.
Lfl nNe sin v

DNis an even periodic function with period 1 and J IIDN(x)Idx !5

*'1I + In v[N+ -] (see Kufner and Kadlec (1971), p. 230). Then for all

* 4 1

Ac4  IGwtUIdlIu u c ,uLf~ ~ ( )

(24 f1 JG'~ ~~jjju 5 f ±AUT DN()xj u)djp
c c c

Ac(W)

*Now, for uEA(W) and 2W- I 2W consider the integral

e2rriuz

CNW

1where CN, = zgc: Izi = W [N(W)+ 1}. Proceeding as in the proof
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of Theorem (2.4.2), we obtain

IGNkw(t,u)I - Isin 27rWt• IINW(tu)l
4)sin 21TWtj W I'j I,

:57(1.e_1r)N(W) •W-I , ucA(W), t<

D, 4 sin 27rWt W n i
(2.4.22) 5 n(1-e-"r) W' # itl <

and (2.4.8) follows from (2.4.1) and (2.4.22). It is clear from

conditions (i) and (ii) that B(t,W) - 0 as W for all tIR 1 . Now

fix tdRI and let W - w. Whenever W is such that N(W) > 2WItl and

t = n for some neIN, then we clearly have eW(t) = 0 from its very

definition. As W - - along any other values (t n , ndN), then

eW(t) 5 B(t,W) - 0. It follows that eW(t) - 0 as W 4 . 0

Remark 2.4.2. It is clear that the approximation of f(t) by a

finite sum of the form (2.4.1) is a much more delicate problem than

its approximation by the modified finite sum of the form (2.4.3).

Hence the additional assumptions on the function f required in

Theorem 2.4.3, compared with Theorem 2.4.1. As in Theorem 2.4.1,

condition (i) of Theorem 2.4.3 puts a lower bound on the growth of

N(W) as the sampling rate tends to infinity. Such a condition is

quite natural and anticipated, as one intuitively expects that unless

enough terms are employed, the approximation may be inadequate.

Condition (ii) on the other hand puts an upper bound on the growth

of N(W) and in this sense it may seem somewhat counterintuitive.

Condition (ii) could be improved, i.e. the restriction on the growth

of N(W) could be weakened, if a better bound than that used in the
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proof of Theorem 2.4.3 could be found for the function

%,~~u - 27 itu 1 --w W e2i tv UD
(;N 9 (t,u) = e2 Tt 1 1W e () 1§d

-w1

as a function of W for fixed t,uEIR (or after same algebra, if the

rate of growth of Ijfw 2Du(x)dxl as u co can be found, instead of

the rate of growth of f /2 iDu(x)Idx which is used in the proof of
0

Theorem 2.4.3, where Du is the Kirichlet kernel D (x) = sinux)' sin x-

It is not known at present whether some restriction on the growth

of N(W) is necessary for the approximation error to tend to zero as

W -+ C, or whether this result holds with no upper limit on the growth

of N(W) as one may intuitively be tempted to expect, and condition

(ii) arises only because of the specific proof used here. Also, it

11 is not known at present whether a bound similar to B1. (see Remark

2.4.1) holds, in this case, for all tEIR

The preceding results are now extended to weakly stationary

stochastic processes (Theorem 2.4.4), harmonizable processes

(Theorem 2.4.5), and to certain stable processes (Theorem 2.4.6).

Theorem 2.4.4. If x = {x(t), tc]R1l is a mean square continuous

weakly stationary process, and if N(W) is a positive integer-valued

function of W > 0 such that co as W w , then for each te]RI

(2.4.23) x(t) = lirai - _ x(ns

W-o n=-N(W) 7(W+lt-n)

where the convergence is in the mean square sense uniformly on compact

sets. Furthermore, for any fixed W > 1 and Iti < such that

t # , neIN, we have
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I (I - I n  s i ~ ( w ' ) 2 (w-n)

Ejx(t) - NW x(-) sIn!wt

nI -N(W)

(2.4.24) :5 4huIR ')[tI + sin 2,r-tI 2N W 2 + 4hii{Iui>W-l1

and and NfW) n( ) sin (2Wt-n) 2
E x(t) - N xW x(z -

2 n-N(W) W i1[(.Wt-n)

1+tn -ff I 2 1 sin 27tWt 2 W]2

where and D are as defined in Theorem 2.4.3. If, in addition,

N(W) and the spectral measure p of the process satisfy the condition

in Theorem 2.4.3, then for all tEIR1

• NfW) xr nsn 2W-n)
(2.4.26) x(t) - lira _ )sn 7r(2Wt-n

W- n=-N(W) Wt-n

is mean square.

Proof. Since x is mean square continuous weakly stationary, we

have for all tE IR1

R(t) = E[x(t)x-(7-] = 00 ertA dpi(X)

and 00
x(t) = I 1/ t dz(X)

-0
where p (the spectral measure of x) is a finite measure defined on

(IB(R1)) {Z(A), AEIR 1 I is a process with orthogonal increments,

and for all - < a !5 b < oo, EIZ(b ) -Z(a) 2 -- p{(a,b])

Consider the mean square error

2 n-n si r(2Wt-n) 2
2-- -N V (2Wt -n)

"= _I n=-N -
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l 0  tN (I e(2Wt-n) NfW) )

_Q* n=--N(W)

DoI~t NW) fix 2s
f le - (1 - n(W e sin (2Wt-n) d(X)

-00 n--N(W) e (ZWt-n)

(2.4.27) f I f2W. e47ljWtu ( (u)dud1i(A)

- XN(

Since this expression is similar to (2.4.4), (2.4.23) follows as in

the proof of Theorem 2.4.1. The proofs of (2.4.24) and (2.4.25),

(2.4.26) are similar to those of Theorems 2.4.2 and 2.4.3 respect-

ively, and hence they are omitted. 0

A second order stochastic process x = {x(t), tE IR} is called a

harmonizable process if its correlation function R(t,s) = E[x(t)x(s)]

is of the form
CO 00

~~~~~~R(t,s) = ]S qi(tu-sv)d u v ,t s m

i -00 -00

4 where p (the spectral measure of x) is a colex measure on (IR,B(R2)).

Theorem 2.4.5. If x = {x(t), tE IR is a harmonizable process,

and if N () as W * , then for each tE]R 1 (2.4.23) holds, wherew
the convergence is in the mean square sense uniformly on compact sets.

Furthermore, under the conditions of Theorems 2.4.2 and 2.4.3,

bounds on the mean square error similar to (2.4.24) and (2.4.25) hold

as well as the approximation (2.4.26).

Proof. Consider the mean square error

2j~t N( W) I{nIx()(1 n, sin iT 2Wt-n)n ((t): = EWx(t) - - -x( s t-n)21!:n--N(W) NM2 t-n 20,r
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f e 2 "it u  NfW) n
foo 0re2nit In W sn i(2Wt-n)f] ( ) - e 7r(2Wt-n) ]

-® - n=-N(W)
N • n

[e-27i~t Nw) NI ) , 7r v sin 7r(2Wt-n)]dp(u,v)•[ e -2 i tv -N (1 - e___-Ii1

n=-N(W) N +(wt-n)

S 1 -I f e KN(W) (u) du

22Wb.V

S 2 e e4 iWtv KN( (v)dv dliii (uv)
- - V-(

- IBy the familiar technique used in the proof of Theorem 2.4.1, we

have

2 2 2eW(t) - l1 IR )Q (t,W) + 41 1i[(ACxAc) ,

where A = [-a,aj, a > 0, and the proof is completed as in Theorems

2.4.1 to 2.4.3. J

We finally consider certain harmonizable, but non-stationary, stable

processes. A random variable X is symetric a-stable (SaS), 0 < a < 2,

if its characteristic function is of the form E(eitx) = exp(-bXltla)

for some positive constant bx* A stochastic process x = {x(t), tEIR1 }

is called SaS, if every finite linear combination of its random

variables is ScaS. The following can be found in Shilder (1970). If

X is a SaS random variable, then, for 1 < a < 2, the map X 1-> 1/a

defines a norm on a linear space of SaS random variables: [Ilxi a = b /a

If the process {Z(X)): X -0} is SaS with independent increments, then

the function F defined on [O,oo) by F(X) = I Z(X)Il, X 2 0, is non-OL
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decreasing and thus defines a Lebesgue-Stieltjes measure PFon

the Borel sets of [0,oo). If the family of functions {f() tc]R1}I

belongs to L2 P) then the integral

x(t) =f 00ft (dZ(X) tc tdR
0

defines an SeaS process and for every taO,

I Ixt)i M I I fIftaiedPF (X)a 0

Theorem 2.4.6. Let a stochastic process x be defined by

where tZAX:1isx~ an were th conegencenis increments and

finite mauepF1an 1<a<2.I - aW -thnfor

every 4I (242)hlswhrth covrec isite

IHII1-norm. Furthermore, under the conditions of Theorems 2.4.2

and 2.4.3, bounds on the IhII10-norm error similar to (..4

and (2.4.25) hold as well as the approximation given in (2.4.26).

* Proof. Consider the a-mean error

=NW) In, n sin 7r(2Wt-n 1 c(1-t) )x()t
n-jxNt) N V Jx(*W rr(2Wt-n) a

f os2tA-NfW) I11nI Co niT sin Yr (2Wt -n) di

0001 2wA n= N(W) (1 j~ - 4 _cs!W2 rr(2Wt-n) I X

f I fN,W(tA)Iea do F(A) , say

As in (2.4.4), we have
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fN w(t,X) cos 2wtX- f X cos 27tC 2Wy+X)KNC ( (y)dy

22W
Re[e 21i t A - 2 e 27it (2Wy+X) K N(W) (y) dy]

and the proof is completed as in Theorems 2.4.1 to 2.4.3. 0

The same results hold for SaS processes

x(t) = J cos 2ntX dZ1 () + f sin 27tA dZ2 (X) , t R 1

0 0

where Z and Z are independent processes as in Theorem 2.4.6.

These processes are the ScS (non-stationary) analogues (1 < a < 2)

of the real stationary Gaussian (a = 2) processes.

2.5. Sampling Approximation Using Walsh Functions.

Recently, Walsh functions have been increasingly used in digital

communication systems: they are easily generated by semiconductor

devices, their pulse shape (1,-l) conforms with operations of digital

computers, and they play, for discontinuous signals, the role complex

exponential functions (and Fourier transforms) play for continuous

signals. In addition, they have been used in experimental sequency-

multiplex systems, image coding and enhancement, general two-dimension-

al filtering, etc.

In this section, using Walsh functions, we derive a sampling

approximation and error estimates for functions which are not necessar-

ily continuous, and for stochastic processes which are not necessarily

mean square continuous. These results are the Walsh-analogues for



36

W-continuous functions of the Fourier results of Sections 2.2 and

2.3 for continuous functions. Results similar to those of Section

2.4 should be feasible for W-continuous functions, but complete proofs

have not as yet been obtained.

The following notation and definitions will be used in the

sequel. JR+ = [0,o), IN is the set of all integers, IN+ is the set

of all non-negative integers, and D is the set of all non-negative

dyadic rationals. Each t > 0 has the dyadic expansion
0o

(2.5.1) t = t , tjE{0,l}
j=-N(t) 3

for all j, where N(t) is such that 2N tt  t < D t l , and we put

t. =0 for j < -N(t). If teD+, there are two expansions and the

finite one is chosen so that expansion (2.5.1) becomes unique. The

componentwise addition modulo 2 (dyadic addition) of t,sEJR+ is defined

by t * s = Xj=_ 0ltj-sj2 "j

The Walsh functions can be defined in several ways. The following

definition is based on the system of Rademacher functions {Rn(t)}nN

tE [0,1), where

Ro(t) = e~i[2t ]
~n

Rn(t) = R(2 t) , n : 1

and by

Rn(t) = e , nEN+ , t[0,1)

The set of Walsh functions {'n(t)JnEIN on 10,1) is defined for each

non-negative integer n = n=N(n) j2- by

N(n) n N(n)+l
(2.5.2) n t) = II (R.(t)) I n l jtj}
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and is orthonormal and complete in L 2[0,1). The Walsh functions are

extended to I*U(t)}u u,tE1R + by

y u) = (t) = j=-ini tt)EI

and they have the property that, for all udRIFZ, whenever to& s D+

A function f on JR + is called W-continuous if f is continuous on

]R\+and right continuous on D+. It is clear that the Walsh func-

tions are W-continuous. If fEL' (]R+), then the Walsh-Fourier transform

(WFl') fW of f is defined by

(2.5.3) fW(u) =f f tM4Iu(t) dt , u. I

and fW is bounded and N-continuous. If f, fW.ELl(]R) and f is W-

contnuos, henthe WFT can be inverted to give

(2.5.) f~t f fN()yp)du , tcJR.+

0

(See Butzer and Splettstbisser, 1978.) The Walsh modulus of continuity

of a function feL (]R+) is defined by

-Iw(f;6) =sup 11f(-) - f(0Oh)tI 1 1 6 > 0
0~gh<6 L (OR)

For at > 0 and a constant L >0, the Lipschitz class LipLt is defined

* by

LipLct - {fEL 1(OR+): w(f;6) 5 L6 a,3 6 > 01

A function fEL 1 (]R+) is said to be dyadic differentiable if there
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exists a gcL1 (]R+) such that

m
IimIJI- I 2j[f(-) - f(-02-j1 )] - ()l~0

g is called the first strong dyadic derivative of f, and is denoted

by D111f. For r > 1, D I~ is defined iteratively by Drf

D~l](D1'rl1f). If f and D [rj f belong to Ll(]R+), there exists a

a constant M such that w(f;6).. M6r (Dl'r~f;6), 6 > 0.

A complex function f on 1R + of the form

2n
(2.5.5) f (t) = f F(u)ipt(u)du , te]R+

0

for some nEIN and some FcLb1 (0,2fn), is called sequency limited

2 to 2n. A sequency limited function f which is W-continuous and in

L1(]R+) has a sampling expansion of the form:

*(2.S.6) f(t) = f( k)J(1; 2 n tk) tEIR

where J(v;t) = j vPju)du, t,vc]R+ (Fine, 1950). As it was pointed out
0

by Kak (1970) and Butzer and Splettst~5sser (1978),

J(1;2nttk) = 1 [2 -n, - t~)

* and thus (under the stated conditions) the functions that are sequency

limited to 2nare precisely the functions that are constant on each

interval [2-nk, 2-n(k+l)), a rather small class (unlike the class of

bandlimited fu~nctions).

A (dyadic) sampling approximation for time-limited functions

(which are not necessarily continuous) was derived by Butzer and

Splettstosser (1978).
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Theorem 2.5.1. (Butzer and Splettst6sser, 1978). Let f be a

W-continuous function on ]R+ such that f(t) = 0 for all t T, for

some T > 0, and f,fWcLl(R+). Then

(2.5.7) f(t) =lim n0 f(--)l -n (t) , te]R+
n- k=O 2n [2'1k,2 (k+1))

where N(n) = [2nT]. If, in addition, either (i) D[r]f exists and

D[r] f-ELiPL/ or (ii) fcLiPL(+r), for some fixed a > 0 and rcEl,2,...},

then

.1N (n) k Lt) r+a 2 -n(r+Cx-l)•(2.5.8) Rsup f(t M I 0 f ( _) 1 M"

tEIR+ k=0 2 n[2-nI,2Zn(k+l)) r+cx-l

We now derive a sampling approximation as well as error estimates

for functions which are the WFT of finite (or complex) measures and

thus not necessarily time-limited nor sequency limited.

Theorem 2.5.2. If f is the WFT of a finite (or complex) measure

P on the Borel sets of JR+, i.e.

00

f(t) = f *t(u)dp(u) , tE]R+
0

then for every tcIR+ and nc IN,

(2.5.9) fn(t) = f( -k)l[ M.n[nn t))du(u)

(2..9) f~() =k=O 2~[2-nk, 2 -n(k+l)) 0

where for each (fixed) tcIR , [n](u) is the 2n -periodic extension

of the function 4t(u), 0 ! u < 2n to R +, and

(2.5.10) If(t) fn(t)l 2 1il[ 2n,-)

Thus for each tc]R+,
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(2.51)f~t M lrn f~ (t)

If, in addition, P~ is absolutely continuous with respect to Lebesgue
measure, and fcLipL(ct+r) for some ax > 0, L > 0, and r{,, 1
then for every tE IR +

(2.5.12) jf(t) -fn(t)l :5 Lra-l 2-n~~tl

Proof. Since l fn] EL 1[0, 2n) is periodic with period 2 n, W-contin-
uous, and of bounded variation on [0 ,Pf), then the partial sums of its
Walsh Fourier series converge everywhere to [n] (e

t (seeChrestenson,
1955, Theorem 2), i.e. for each cR

(2.5.13) [,n] ()=Ia2-nu),uI4
t k=0 nk k~t

where an~~t

0

f I t(2nv) k(v)dv
0k

1
f Iv(2 nt)YPvk)dv

1

('v2 n k)dv

J(1;2nt * k)

Le 1 [2-n k,2 n (k~l)) Mt
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~:Kt~f) =k=0 2 [211k,2 (k+l)) f&01()-f4
1 udiu

CO~ ~( [n K (t)IdjiiI(u)
0 tk=O k n'nk,2 -(,+,))

Using (2.5.13) and the fact that for each nc1N arld tc]R4 ,

-4 n()_K*k(-uln - (t)j 2
k= [ k, n(k+l))

for all ueIR + and K > 1, it follows that

E: (t;n) -* 0 as K 00 ., for each tE IR + and neIN

proving (2.5.9). Now

If[ni~~~~~
If(t) - f, (t) I f p (u) d~j(u) f uPt iu~

hence (2.5.10) and (2.S.11). To prove (2.5.12), notice that if

dii(2) =F(u) and fELiLrc) then
dt P rOL

(2.S.14) JF(u)I ! L 2 r+ct1u-rcx u > 0

(see, Ritzer and Splettstrb6sser (1978)). From (2.5.10) and (2.5.14)

we have

*r+,-l 
10

If(t) -fn(t)I s L 2 f rI d

L 2  ~ 2 -n(r+cx-l)
(rF - 2
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We end this section by extending the results in Theorem 2.5.2

to stochastic processes which are not necessarily continuous. We
2

first introduce the following notation. A function R on R+ 

2 2
[0,a)x[0,w) is called W2-continuous, if R is continuous on JR+\D+

and continuous from above on D2 (in the sense of Neuhaus, 1971). If

RcL (]R+), the first modulus of continuity is defined by

w(6,,;R) = sup{IAhgR L1 2 0 h < 6, 0 s g < X}, 6,X >0,

L (]R )

where Ah,gR(t,s) = R(teh, seg) - R(teh,s) - R(t, seg) + R(t,s), Also

the class Lip (2) a is defined by

LipL(2)a = {RELI (IR2): w(6,X;R) < L6aXa , 6 > 0, X > 0}

The WFT of a function REL (IR 2) is defined by

R W(u,v) = j f R(tS)Pu(t) v(S)dt ds , u,vE]R+
0 0

Finally, if R is W2-continuous and R,R EL (]R2), then (as in (2.5.4)

(2.5.15) R(t,s) = I f R W(u,v)pt(u),t(v)du dv , t,sE]R +
0 0

Theorem 2.5.3. Let {x(t), tE]R+} be a second order stochastic

process with correlation function R. Assume that R is W2-continuous,

Wi 2 L1(R) altRanfo
R,RELI(]R+), R(t,*) Ll(m+) for all tER , and RW(.,v)cLl(IR+) for

all vU +. Then for each tER 1, ne N

(2.5.16) xn(t): = X( )1 (t) = Rf O nl(u)y(u)du
Sk= 2 [2"nk,2-n(k+l)) 0

where the equality is a.s., the series converges in quadratic mean,

and y is defined by the quadratic mean integral
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o

y (u) Rf 4)U(t) x(t) dt ue R
0

Also, for each tclR+ and nEc,
Soo

(2.5.17) e 2(t): = Elx(t)-XnMt 2 1 4 f f IR (u,v)ldu dv
2 n 2

n

and thus for each t4EIR+

(2.5.18) x(t) = lir xn(t)n7+O

is quadratic mean. If, in addition, RcLip 2 (r+a), for some a > 0

and rE{l,2,...j, then

( 2 L 22(r+a) 2-2n(r+a-1)(2.5.19) en (r+ct-1)

Proof. The proofs of (2.5.16), (2.5.17), and (2.5.18) are

similar to those in Theorem 2.2.2 and hence omitted. To show

(2.5.19), notice that for any u > 0 we have the dyadic expansions

00 -
u X u.2- , u'= [ (u'). 2":j---N(u)uj j=N(u)+l

-j iand thus

u(U"1) exp{i N u.} = -1 ,

j=-N(u)

(see Butzer and Splettstbsser, 1978, p. 102). From (2.5.15), we

have that for any u > 0
CO CO

R(u,v) f - f R(t,s)u(teu l),v(s)dt ds
0 0

00 00

-f f R(teul ,s)* (t)Iv(s)dt ds , vR+ ,
0 0

Similarly for any v > 0
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0R0 t soy 1)ut v( d
RW(u,v) = - f R(tsev )q.(t)*,(s)dt cs , udR

00

and for u,v > 0

R(u,v) = fo R(tou-1 , sev-1 )u(t)*v(s)dt ds
00

Hence for u,v > 0
RW(u,v) =- If [R(teu - I sev-  R(teu'l1s)

00

- R(t,sev - ) + R(t,s)]u(t)pv(s)dt ds

and

IRW(u,v)I 4w(2u-1,2v-1 ;R) <5 L (2)r+a(2)r+a
P V ,V > 0

Now from (2.5.17) we have

e2 (t L 2 2(r+ct)r(f0 1 du L 2 2(r+at) 2-2n (r+c -l1)
n 2 r~a (r-+a-1) 2

The following corollary shows that the approximating sequence

nx (t) converges to x(t) with probability one for each tEIR 1, and

gives the rate of convergence.

Corollary 2.5.1. Let x be as in Theorem (2.5.3) and assume that

r + ct > 2. Then for each tEIR1,

2yn 0
(2.5.20) 2 sup lx(t)-Xn(t) 0 a.s. as no  OD

n>n0

where 0 < y < r+a

Proof. For each fixed t, define Xu, 0 ! u 5 1, by

x(t) for u = 0
11

2 t) fo52(n1) n 1,
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kwhere xn(t) 10 Ox( --X)I (tkn~~ ) Then X is separable

in u and from (2.5.19), we have (with n such that 2- 2n < u :5 2-2(n-1))

EIXX. 2 =l~)2() 2 -< C(2- 2n l+B < Cu 1+B , u > 0

where C - L 2 2 and a r+a-2 > 0 .Thus, by Kolmogorov's
(r+t- 1)

theorem (Neveu, 1965, p. 97),

sup Ix(t)-x (t)J sup jX0-Xuj 0 a.s. as h 4-0
and hnO-< h~' Ocu~h

ad(2.5.20) follows by putting h 2- 2n n0OD



CHAPTER III

Sampling Expansions for Operators Acting on

Certain Classes of Functions and Processes

L 3.1. Introduction..

In this chapter the problem of reconstructing bounded linear

operators acting on classes of functiors bandlimited in the sense

of Zakai (1965) and of Lee (1976a) will be considered. Sampling

expansions for bounded linear operators acting on classes of func-

* tions with wandering spectra will also be investigated.

Recall that a function of the form f(t) =f WOe21Titu?(U) du
_-WO

2E

where WO> 0 and fEL [-WW 0] is called conventionally bandlimited

to W0. The class of all such functions will be denoted by B0(W0)

214

and is a Hilbert subspace of L 2(IR 1). Every fEB0 (W0 ) has the follow-

ing sampling expansion and convolution representation

f(t) I f( sin 7(.j2Wt-n

3.1.f f(u)sin 2W(t-u) d 1n

-0 'rrW(t-U) U ,tl

where W o , and the series in (3.1.1) converges uniformly on R

and also in L2 (In). The functions

exasin= sinar 2Wt-nors n 0, + 1+2,.
Oi r(2Wt-n)n0+,+2..

form a complete orthogonal set in B(W) which is strictly larger

-W-
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than B0 (W0 ). It is thus interesting to notice that when W > W0

the partial sums of the series in (3.1.1) belong to B0 (W) and yet

its pointwiseor L2(IR )) limit belongs to the smaller subspace

B0 (W0 ). Of course, when W = W0 , (3.1.1) is the expansion of f

in terms of the basis { 1 n(t;W 0)} of B0 (W0).

Zakai (1965) extended the classical concept of conventional

bandlimitedness to a broader class in which the functions need not be

square integrable. He also proved that if fEB 0 (W0 ) and W > W0, then

(3.1.2) 1 n = 0
n=

and if, in addition, f(u)(1 e 0) belongs to LI-WOWO], then

(3.1.2) is also valid for W WO.

3.2. The Bandlimited Case.

Kramer (1973) derived a sampling expansion for bounded linear

operators acting on conventionally bandlimited functions, and Mugler

(1976) derived a convolution representation for such operators.

* Theorem 3.2.1. (Kramer (1973) and Mugler (1976)). If T is a

bounded linear operator on B0 (W0 ), then for every fEB0 (W0 )

0sin w(2W 0(.)-n)
[Tf](t) = f( n-)T[

n=-n0

Go sin 2W 0('-u) 1
(3.2.1) =-f f(u) T[ 2](t)du , tcR

00 2irW 0 (- -u)

When T is time invariant, i.e. [Tf(.-a)J(t) [Tf](t-a),

(3.2.1) takes the simpler form
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Csin 27r W0(.)
j~ () _ t- Ti 2TW0( (') &

n=- 00

f(t-u) Tin 2rWO(.) ](u)du , t IR 1

The significance of Kramer's expansion is that Tf may be re-

constructed from samples of f itself rather than from samples of

Tf. For instance, the differentiation operator [Df](t) =  f(t)

is a time invariant bounded linear operator on B0 (W0 ), hence from

(3.2.1) 
we have

f(t) n d sin (2W0t-n)
n:- 2W0 dt 

[ r(2W0t-n)

Kramer's sampling expansion (3.2.1) will be generalized to

broader classes of functions. The following notation will be used

in the sequel. or a non-negative integer k, L2 (k) is the class of

all complex valued functions defined on R1 that are square integrable

with respect to the measure dLk(t) 2 dt If £EL2(PO )  then f
k (l+t) T ,

defines a tempered distribution (denoted also by f) on the class S

of rapidly decreasing functions by

f(0) = f f(t)0(t)dt , 0,ES

(See Chapter 4 for relevant definitions.) The distributional Fourier

transform of f is the tempered distribution f defined by f(6) = f(6),

OeS. The spectrum of f is the support of f. For k = 0,1,2,... and

W0 > 0, Bk(Wo) is the class of all continuous functions feL 2((k)

whose (distributional) spectrum is contained in [-Wo,Wo], and is

called the class of Wo-bandlimited functions in L 2(k ) . It is clear
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that B0(W0) is the class of W0-bandlimited functions in L2(]R1) , and

Bk(WO)cBk+l(W0). Also, B0(W0) is dense in Bk(W0) for every positive

integer k (see Lee, 1976b).

Zakai (1965) obtained a sampling representation for functions

in BI(W0). Cambanis and Masry characterized Zakai's class BI(W0 )

and as a consequence sharpened Zakai's sampling expansion (see

also Piranashvili (1967) and Lee (1976a)).

Theorem 3.2.2. (Zakai (1965), and Cambanis and Masry (1976)).

If fEBI(W0 ) and W > W0 , then

O

(3.2.2) f(t) = [ f(gl) s 2(t-n) teIR
~n=- -oo

and the series converges uniformly on compact sets.

Thus, functions in BI(W O) are reconstructed from their samples

using functions in BO(W), W > WO.

*: Remark 3.2.1. It should be noted that (3.2.2) holds for

W = W0 if the Fourier transform g of g(t) _ [f(t)-f(O)]t-1 is

i ^ u
such that g(u)(l + e Wo)"l belongs to LI[-w 0,w0].

Lee (1977) proved an analogue of Theorem 3.2.2 for functions

f EBk(WO), k >- 0.

Theorem 3.2.3. (Lee, 1977). If fBk(WO), W > W0, 0 < 0 < W-W0,

and t is an arbitrary but fixed Cr-function with support in [-1,1]
00

and f ,(t)dt - 1, then
-00



so

(3.2.3) f(t) = ( ff ) sin 7(2W-n) n t 1

n= -  71 (-Wt -n) t

and the series converges uniformly on compact sets.

sin 27TW(-)

It should be pointed out that the function s 2W(.)

belongs to BO(W+a), W > W0. Thus functions in Bk(W0) are reconstruc-

ted from their samples using functions in B0 (W+O), W > W0 and

0 < a < W-W0. It should also be noted that the presence of the

(damping) factor p in (3.2.3) cannot be eliminated, as (3.2.3) is

not valid for fEBk, k > 2. As a counter example consider

f(t) = t(fEB 2(W0)); then f( ) = n and the series in (3.2.2) does

not converge.

Campbell (1968) derived sampling expansions for the Fourier

transforms (as functions) of tempered distributions with compact

supports. If a tempered distribution F has a compact support and

2witu
eu(t) = e , then F(eu) is well defined, since euECe for all uEIR I.

In this case the Fourier transform P of F may be thought of as a func-

tion defined on R by F(u) = F(eu), uEIR (see Section 4.2).

Theorem 3.2.4. (Campbell, 1968). Let F be a tempered distribu-

tion with compact support and with Fourier transform f as a function

on I 1 i.e. f(t) = F(et), tR Let * be a test function such
qt

that O(u) = 1 on some open set containing supp(F), and let W > 0 be

such that the translates {supp(p) + 2nW}n 0 are disjoint from supp(F).

Then

(3.2.4) f(t) )K(t
n= -w



1 27rituwhere K(t) = 1 fe ip(u)du , and the series converges for every

tcIR.

Campbell's result does not require the support of F to be

symmetric with respect to the origin and is more general than Lee's

(Theorem 3.2.3) as functions in Bk(WO) have (distributional) Fourier

transform with compact support in [-W0,W0 ]. Campbell considered also

a sampling expansion similar to (3.2.3) when supp(F)c(-W0 ,W0 ),

W > 0, (for specific 1)) and derived an upper bound for the trunca-

tion error which was recently made more explicit by Lee (1979).

To establish notation, let be a fixed but arbitrary function
iA

in S whose Fourier transform p satisfies the conditions

M(i) i is a symmetric test function supported by [-W0-6,W0+6],
0O< 6 < W09

(ii) -t 1 for all tE[-WO,WO],

(iii) (t) < 1 for all t4[-Wo,W01
'1

Then for all fEL , the convolution f* exists and is a Cm-function

in L2 ()Jk). If fcB k(WO), then

f(t) (f"P)(t) , tglR1

(see Lee (1976a), also Cambanis and Masry (1976)). The following

characterization of Bk will be needed.

Lema 3.2.1. (Lee, 1976b). If feL 2(pk) is continuous, then

the following are equivalent,

(a) f(t) = (f*q)(t) , t. 1 ,
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(h)k- f~t) k -
(b) f (t) = ki: . t + k , tcR , and some gcB0 ( 0 ),

j=O j0  0(O

(c) the spectrum of f is contained in [-W0,W0] ,

(d) f has an extension to an entire function satisfying

k27rIW0IImz I
If(z) 1 -< Ck(l+lzl) e, zEC and some Ck > 0.

The following result is a generalization of Kramer's sampling

expansion (3.2.1), in the sense that (3.2.1) is established for band-

limited functions fEBl(W0) (nB0(W0)), as well as of Zakai's sampling

expansion (3.2.2).

Theorem 3.2.5. Let feB,(W0 ) and W > W0. Then for any bounded

linear operator T on B (W)

(3.2.5) [Tf](t) = I f(n])[Tnl(t) , tiEIR
n= -c

t;W = sin i (2Wt-n) 2
where r n( = (2Wt-n) and the series converges in L

and also uniformly on compact sets.

Proof. Fix fEBl(W0 ) and W > W0. We first show that the converg-

ence in (3.2.2) is in L2 (l) as well. From (b) of Lemma (3.2.1) we

have that f(t) = f(0) + tg(t) for all teIR1, and some gEB0(W01;

hence by (3.1.1) we have
00

0 fig(t) g(n (t;W) 2dt

f f( 00-f(o)
fi ff(t)-f(0) " f'(01 0 (t;W) " 0 n/ W On(t ; w) 2 dt

(3.2.6) a fJ f(t)-f(0) -f' {O)00(t;W}

2Wt[f( )-f(0)] 2 dt
T(2Wt-n) .sin n(2Wt-n)l 2 -- ,

nO t+t
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Since * + by writing
n(t 

n

t[fC n-~~ fC _-fCO)
W)- sin w(2Wt-n) = (_I)n nV (O (t;W)

irn(t

nn

in (3.2.6) we obtain

f ) -f (0)
0 = fr ft)-fCO)-f' (O)¢ot; W -n 0 ( _1 ) n  n2W 0(t;W)

jU n/20 n O

(3.2.7) + f(z)on(t;W) - f(0)on(t;W) ] 2d iI(t)

Now (3.2.2) applied to g gives

f(s) -f(0)(3.2.8) fO + -1 n  n2W -0.
n 0

Also from the classical sampling theorem (see Zakai, 1965) we have

Go1O n(t;W0 = 1 , tEIR 1

n
= 
-o

For any positive integer N, let SN N (t;W). Then for
n = - N

any t 0

(3.2.9) ISNN(t)I - IS0N(t)+ s( t(t) + IS 2Wt] l(t).

Consider So (t) and let t be such that sin 2nWt 0. The successive

terms of S-N(t) can be written as

sin 2rWt sin 27Wt sin 2nWt . N sin 2wWt
21TWt ' (2Wt~l) I T(2Wt+2) "" N (2Wt+NT

and are thus alternating in sign and decreasing in magnitude. It
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follows that 0 sin 2irWt s 1 for all t 0, and similarly

for 12Wt] and SN  Thus for all N > 0 and t -0, [SN(t)j < 3
0 [2Wt]+l" ' S-N-t"

The same result holds for t < 0. Thus ISNN(t)-I _ 4, and since

SN (t) - 1 for all tElR1 , and l, is a finite measure, it follows by

the bomided convergence theorem that SN(t) 1 in L'(pl) . It then

follows from (3.2.7) that

0 = flf(t) - X f( )On(t;W)12 dl(t)
n-

proving the convergence of (3.2.2) in L2 (l). Since T is a bounded

linear operator on B1 (W), and hence continuous, (3.2.5) follows with

. the series converging in L2(1l). Masry and Cambanis (1976) showed

that if hl,h2EBl(W), then

2 1Ihl(t)-h2(t) C(l+t2)- I Ihl-h21 , te IR
2()121L 2 NOJ1

,whic

which implies that (2.5.2) converges uniformly on compact sets. 0

Remark 3.2.2. As in Remark 3.2.1, we notice that if the Fourier

transform g of g(t) = [f(t)-f(0)]t i satisfies the condition:

7i U
g(u)(l + e 0) 1ELI[-W 0,W0 ], then (3.2.8) and thus Theorem 3.2.5

remain true for W = WO.

For k 2- 2, (3.2.5) is not valid, since it is not valid when T is

the identity operator (a counter example is f(t) = t which was mentioned

earlier). The following expansion for k > 2 involves the derivatives

of f at zero and the functions tJcBj+l(W), 0 5 j 5 k-2, and

k-i sin 27Wt C Bk.I(W), so that functions feBk0) are reconstructed
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from their samples and the values of their derivatives at zero using

functions in B.(W), 1 s j 5 k-1, W > W0 , i.e. in Bkl(W).

Theorem 3.2.6. Let fcBk(Wo), k a 2, and W > W0 . If T is a

bounded linear operator on Bk(W), then

(3.2.10) [Tf](t) [Tfk_](t) + n Off ( ) - f k - 2 ( * )W T' n k ] ( t ) , t"'R

where

k-2 f(J)(o) tj ( t )  f +  f(k-)() t k -1 sin 27Wt

fk_2(t) = kj=0 j! (k-l)!

2Wt k-1 sin iv(2Wt-n)
n,k n -r(2Wt-n)

2and the series converges in L (Pk) , as well as uniformly on compact

sets.

Proof. From (b) of Lemnma 3.2.1 we have

k! [f ()_k 2 f(J)( 0 t(k1
(3.2.11) f(t) t-k- 2() ( t) = kf(k')(o) + tg(t)

for some gEB 0 (W0 ). Since F(O) = kf(k-l)(0), then by part (a) of Lena

3.2.1 we have that FcB,(WO) and then by (3.2.5)
00

(3.2.12) F(t) F n , tl= ( qn(t) I tE] ,~n= -o

where the series converges in L2 (l) and uniformly on compact sets.

Then from (3.2.11) and (3.2.12), it follows that for all tEIR1 ,

(3.2.13) f(t) = fknlnt) + f -k.()

and the series converges in L2 (Pk) and uniformly on compact sets.

(lmmjk
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2I

We notice that t3 1 j s k, since ti 1cL(k) and for any

function $cS whose Fourier transform is a test function with

ij(t) = 1 on [-W,W], and *(t) < I for all t [-W,W] we have

f(t-u)J (u)du = ftJ*(u)du + f[ (j)tJ(-u)Jrr],(u)du
rl

= tjA(0) +_, 1(Jtr( ' l)Jrfu j - r * (U)du

r1= tj + Jt~)-j(~)O

, = tj

We also notice that tk-l n(t;W) belongs to Bk(W) by (b) of Lemma 3.2.1

since 0 n(t;W) B0 (W) for all n. Now since T is a bounded linear oper-

ator on Bk((W), and hence continuous, (3.2.10) holds where the converg-

ence is in L (Pk), and the uniform convergence on compact sets follows

by (c) of Lemma 2 of Masry and Cambanis (1976).

Example 3.2.1. The m-th derivative operator [D(m)f](t) f(m)(t),

feBk(WO), m,k ; 1, is a bounded linear operator on Bk(Wo).

Proof. Since fcBk(WO), then by (a) of Lemma 3.2.1 we have

f(t) - f f(u) (t-u)du

for any cS such that P is a symmetric test function supported by

[-W-6,W+61 for some 0 < 6 <W0 , V(t) = i on [-W0 ,W0 1, and q;(t) < 1
on [-W0,W]c. Hence, for all tIRI,

[D(m)f] (t) = f f(u)[D(m)4](t-u)du
-0O

and
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I[Dmf]tI sf1 f(U)I.If(V)I.I(D(m) ](t-u)I.I [D(M)wIt-v) du dv

Sine W~ S, ml1, then I[D(m)*] (x) <CL 2 j m , for every n 2: 0,
(1+x)

and thus for n = k

I[D f](t)I2 ' Im, fI f(u)lHlf(v)l du dv

_00 CO (+(t-) (1+(t-v) 2)

C 2~ k 0 I0 f(u)12 2+If~v 2)

2 _) _1(t0)- (1+(-t-u) 2 )k (1( )2 k du dv

(3.2.14) C<~ f k 0 lf ) du , telR1

weeC', ' ,2 k "m,k k 1. Frcm (3.2.14) we obtain_(0 +x)

(3.2.15) HD(M)fI 1 22  CG~k fr0f0 Iful2dut
(3.2.15) L(Ilk) ' I -00 (1+t )(1+(t-u) 2 kdut

Now we argue as in Lee (1973). Letting

0t
Ik(u): f1 2k 2k

-(t+t )(1+(t-u))

and using (1+u2) ! 2(1+t2)(1+(t-u)2) we obtain

'k±1(u) !5 2 21k
(+u)

and thus 2 -

(3.2.16)5 
2k-



since Il(u) :5 22 (Zakai, 1965). From (3.2.15) and (3.2.16),
l+u

it follows that

L(P1k) mk L(".k)

From Example 3.2.1 we notice that if LEBk(WO), then for any

W > Wom :1

f W)(t) f (in)(t) + I {f~ f (Z) 9)}U ?R 1)V

where ,k1 k2 and 4n~ are as defined in Theorem 3.2.6.

We now obtain a convolution representation (which is a variation

of part (a) of Lemma 3.2.1) and an alternative proof of the sampling

expansion (3.2.3) for functions in Bk(Wo), k >t 1. This result is

the analogue of (3.1.1) for functions in B (WO), k ?: 1.

Theorem 3.2.7. Let fEBkW) W > Wand 0 < 8 < W-W0. If ~

is an arbitrary (but fixed) test function with support (*)ct-l,lI

and f 00 (t)dt = 1, then
-00

sin 2rrW t-u)
f(t) =f f(u) 2rrW t-u) (~-)d

-00

I f(tl) 7r2t- t(8t-*])

and the series converges pointwise everywhere.

Proof. Fix frB k(W0), W > WO, and 0 < 8 < (W-W0). Then for all

1s4ELR ,f(*)'P((s--)) belongs to L (IR1) Indeed, for all zcC,
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WP(z) =f O~u)e- 27i~lzu du

and integrating by parts n times, we obtain

(-2Tri~z) ntp(az) =f lp~fl(u)e 2 Tiazu du

Thus for any n ! 1 we have

1 frB~zz 14 ()ld

and hence
27ra I uzz

Ce
(3.2.18) I(az), 5 n~~ f

It follows that for every sEIR,

-00 00 (1+15-t 1) k

2k2 2k2
2 Ck~ (ljs - (+ti kdt <

(since (1+t 2k IIl 2k lts for all tseIR Also, by

* by (d) of Lemma 3.2.1 we have

k 0 TOImZ

and by (3.2.18)

jf(z4i^W(-Z))j <- CkC k~a(+z)kke2r( BI

(1+1S-zi)

C an zc (sinc (1+iI) k e 7(W +6s)J k kI

for all sR1an E (sne(jz kS0 SOk(Ils-zl) k. Thus
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by the Paley-Wiener Theorem, we have that for all sg]R
1, f(.)ij8(s-.))

belongs to B0 (W0+). Since W0 + < W0 +W-W0 = W, by (3.1.1) we have

that, for all t,sEIR

f(t)4( (s-t)) = I f(u) sin 21W(t-u) ((s-u))duZi(t-u)
o0

(3.2.19) =) sin 7r(2Wt-n)^ n(3.219)f (t 7t(ZWt -n) Ol~s- V))

and the series converges uniformly on -= < t < -. Now putting

s = t in (3.2.19), the required representation (3.2.17) follows. 0

3.3. Bandlimited in Lloyd's Sense.

. Our goal in this section is to obtain sampling expansions for

* bounded linear operators acting on classes of functions and stochastic

processes bandlimited in Lloyd's sense. Lloyd (1959) extended the

concept of "bandlimitedness" by allowing a "bandlimited" function to

have a wandering, rather than compact, spectrum. An open set VcIR 1

is called a wandering set if there exists a real number W > 0 such

that all its translates {V+2nW}, nEIN, are disjoint. Lloyd derived

a sampling expansion for wide-sense stationary processes whose

spectral distributions F have wandering supports, and also proved

that if 2W0 is the Lebesgue measure of supp(F), then W0 : W.

Theorem 3.3.1. (Lloyd, 1959). Let {x(t), tE]R I } be a measurable,

second order, mean-square continuous, wide-sense stationary stochastic

process, and V be the support of its spectral distribution F. If, for

some fixed number W > 0, the translates {V 2nW} of V are all disjoint

then



61

N 1
(3.3.1) x(t) lir (1 n )K(t tEIR

N - o n = - N N + )  ) ,,

where K(t) f e2Tritudu , tcl, and if, furthermore lir supltK(t)I< a,
WV tE R 1

then

N t~

(3.3.2) x(t) = irna x(.)K(t -tER

N-. n=-N

where the convergence in both (3.3.1) and (3.3.2) is in the mean square

sense.

Lee (1978) extended Lloyd's result to functions in L2(vk)

with wandering (distributional) spectra, and to non-stationary processes

whose correlation functions have (distributional) spectra. BeforeIstating Lee's results we introduce the following notation. Let

x = {x(t), tEIR I} be a measurable stochastic process with correlation

function R(t,s) = E[x(t)x(s)], t,sEIR I, which satisfies

(3.3.3) f R(t,t)d (t) < , k > 0

wr k1 2
where dk ( dt. We may define an operator R on byk ( l(1t2) k  (P)b

00

[Rf](t) = f R(t,s)f(s)dIk(s). R is a trace class operator, with non-
-c0

zero eigenvalues {Xk}k.1 and corresponding eigenvectors {f

Cambanis and Masry (1971) obtained the following representations for

x and R:
00

(3.3.4) x(t) X f k(t)&k ) tEIR
k=l

where the series converges in dhe mean square sense and also in L2 (Pk)

a.s., and {Ck}k forms an orthogonal basis with EIkI12 = Xk for the
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Hilbert space H(x) generated (in the mean-square sense) by the random

variables of the process x, and
00

(3.3.5S) R(t's) k f. ;kk(t)k(s) , t,s-EIR 1

k=1

where the series converges absolutely and in L2(Pk ) .

Remark 3.3.1. Since R satisfies (3.3.3), then

0 f G JR(ts)J 2 dt ds < -, and hence the Fourier transform of R

-00o_.(l+t +S

exists as a tempered distribution in the Sobolev space H2'-2k (IR 
)

(see Trbves, 1967). If the support of f is contained in an open set

V whose translates by (2nW,2nW), for some W > 0, are all disjoint,
~A

then (Lee, 1978) for all k, supp(fk) = {y: (y,y)supp(R)}cV0 =

{v: (v,v)cV}, and the translates of V0 by 2nW are all disjoint.

Let U0 be an open set such that supp(fk)cUOcUOcVO, let ' be a
function that equals 1 on U0 and 0 on VC and jip(t) 1 1 for all tEIR0' tEIR

and let the function K be defined by

(3.3.6) K(t) = 2-- 2witu'(u)du

Theorem 3.3.2. (Lee, 1978). Let fEL 2 (k ) , and suppose that there

exists an open set VDsupp( ) such that for some fixed W > 0 the trans-

lates {V+2nW}, ncIN, of V are all disjoint. Let U be an open set such

that supp(?)cJcUcV, tp be a CW-function that is 1 on U and 0 on Vc ,

1 -e27rituand K be the function K(t) =- e *(u)du . Then

(3.3.7) ft , tdR 1

where the series converges pointwise everywhere.
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Theorem 3.3.3. (Lee, 1978). Let fx(t), tEIR1I be a measurable,

second order, mean-square continuous process with correlation function

R which satisfies (3.3.3) for some non-negative integer k. Let V be

an open set such that supp(R)cV, and suppose that, for some W > 0,

the translates {V + (2nW,2nW)I, nEcN, are all disjoint. Then for each
IR1

AA LE IR,

(3.3.8) x(t) = t -n-' n
n=-

where the series converges in quadratic mean and almost surely, and

K is defined as in Remark 3.3.1.

We now generalize Kramer's expansion (3.2.1) to bandlimited func-

tions with wandering spectra and Lee's expansion (3.3.7) (the case

k = 0) to bounded linear operators acting on the space Lk(U,V;W)

1which is defined as follows. Let U be an open set in IR such that

for some open set V D U and W > 0 all the translates {V + 2nW}, nEIN
are disjoint. The class of all functions fcL 2 (Pk) with supp(f)cU

is denoted by Lk(U,V;W), and simply by Lk(U) when the set V is not

required to have the properties stated above. Since the translates of

U are disjoint, its Lebesgue measure is finite (Lloyd, 1959), for

fEL1]R 1  n 2  1k = 0, mL(I1  n L2(R). It follows that

(3.3.9) f(t) f e f(u)du , a.e.

and thus every function in L0(U;V,W) has a continuous version. Only

continuous versions will be considered in this section.

Theorem 3.3.4. If T is a bounded linear operator in L2(1) such that T

maps LO(1o,Vo;m) into L0 (1J0,V0;W), and K is defined as in Theorem 3.3.2,

then for every trIR 1 ,
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Go
(3.3.10) [Tf](t) I f( [T. A - )(t),

1~ 2 1and the series converges uniformly on IR1 as well as in L (IR1).

Proof. Define the function F by

F(u) = (u-2mW) , uIR 1
:-' m7--co

F is the 2W-periodic extension of f, and f IF(u)f'du 2

I, an L L(]R1)

where Iw = (-W,W). Thus from the L -theory of Fourier series, F has

the Fourier expansion

N ni u
(3.3.11) F(u) lir I ne ,

N- n--N

in L2(-W,W), where

nn

C F(u)e du
IW

-= f~ 4~ F(u)e du (U =U+2mW)
I&n(U Ui)

n

--1 f f(u_)e~r W du

Wm IwfUm
Tri 11u

I f _ f (u e W du.
*2 m IWAU2Il

But the sets (IwnUm) - 2mW = W  2m W n U are disjoint and their

union is U, so that
nA W U I n

(3.2.12) Cn = -j f(u)e du f 2W""
U
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We notice that for any gcL 0 (UV;W),

(3.3.13) 1g(t) I f 19(u)e2TitUIdu I II
U L (JR

where jul is the Lebesgue measure of U; i.e., the evaluation map

on L0(U;V,W) is bounded with norm 5 ]UI

Now consider the error

N
N (t) : = [Tf ](t) - n=- ( ) [TK ( -- ) (t) l

N
-[UI'lITf - f() [TK (- )t - 2 dt

n=-N L(JR1

- IIJIiTll{f If(t) - f()e W Ul2

-0 n= -N
N -i n U

"n [2u}
ILJI 2 ITH If fi(u) 2 f f() e I du

n-fN

21 1p) ~ f n W 2
+I n=-N 2 W f (t) e I du}2V-U n=-N

.N

? N -7r1 n U

(I3.3.1T4lf) v (u) - I Cne W 2du

V-U n=-N

By (3.3.11) and noting that F(u) = 0 on V-U, it follows that the

right hand side of the last inequality in (3.3.14) tends to zero

independently of t, then eN(t) converges to zero uniformly in t on

1
IR.

We now consider the stochastic analogue of Theorem 3.3.4 for

processes bandlimited in Lloyd's sense which are not necessarily
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stationary. To fix notation, let x - {x(t), teJR 1 be a measurable,

second order, mean-square continuous process with correlation func-

tion R which satisfies (3.3.3) for k = 0. Assume that V is an open

set in IR2 such that, for some fixed W > 0, the translates {V+(2nW,2nW)},

neIN, of V are all disjoint, and let U c V be a fixed open set in IR2

If supp(R) c U, then almost all sample paths of x belong to

L0(U0;V0,W), where U0 = {u: (u,u)cU} and V0 = {v: (v,v)cV} (Lee, 1978).

It then follows from Theorem 3.3.4 that if T is a bounded linear oper-

ator in L2 (IR ) such that T maps L0 (U0 ,V0 ;W) into L0 (U0 ,V0 ;W) then with

probability one

(3.3.15) [Tx](t) = nx(-)[Tk(. -)](t) tIR 1

where the series converges uniformly on IR as well as in L2 (IR 1)

We show that under appropriate conditions on the operator T

(Theorem 3.3.5) or on the correlation function R of the process x

(Theorem 3.3.6) the expansion (3.3.15) converges also in quadratic

mean.

Let T be a bounded linear operator in L2(IR1 ) of integral type

with kernel SEL 2(IR 2):

(3.3.16) [Tfl(t) f I S(t,u)Y(u)du a.e., fcL ( 1)

and assume that the kernel S satisfies the following conditions:

(i) S(t,)cL 2(IR ) for all tclR1 and t t-->S(t,.) is a contin-

uous map from IR1 into L2 (11), so that each Tf has a

continuous version for which (3.3.16) holds for all tEIR 1.
(ii) SE[L0 (U0 ;V0 ,W) a L0 (UO;V 0 ,W)] [L2 (R 1)  L0(U)]; so

that T maps L0(U0 ;V,W) into L0(U0 ;V,W), (note that

L c) -= L(U 0 ;V0 ,W).
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(iii) f (l+u 2)I1S(t,u)lIdu < _for all teJR 1.

Since the sample paths of x belong to L0(U0;V0 ,W) a.s., we have with

probability one

(3.3.17) [Tx(.,w)](t) =f S(t,u)x(u,w)du , for all ER

and we now show that under condition (iii) on the kernel S of T, the
w1
series in (3.3.15) converges also in quadratic mean for each tEIR.

Theorem 3.3.5. Let x ={x(t), tc]R} and T be as defined above.

Then

(3.3.18) [Tx Wt = 00 x() [TK(.-
n=-o

where the series converges in the mean square sense for every tE]R,

and K is as defined in Remark 3.3.1.

Proof. Recall the expansion (3.3.4) of x where the series con-

verges in L (]R1) a.s. Since almost all sample paths of x as well as

all fk belong to L 0(U0;V,W), (Lee, 1978), and since T is a continuous

linear operator on L0(U0;V0,W), it follows that with probability one,

(3.3.19) [Tx](t) I [Tfk](t)ck
k= 1

in L 2 (IR1  and also pointwise everywhere by (3.3.13). Thus, for

14every tfI we have

*1 rI[TxI(t) X [Tfk](t)&j E [Tfk](t)kI
k=l I lkIN+l k

- I[TfkJ(t) hl[Tf p](t) IF (kyp
k=N+l p=N+l

I Xk Ak[Tfk] (t)lI
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But by (3.3.13)

Irq'.r)1I 2 < IId ITfl 12 .J UN IT11 2 1 1fkI12

L 2(IR)1 L 2(]R1)

Thus for every te IR,

EI[Txlt) - N [Tfk]I 12 < IUlJITII 2 1 X O0as N+
k=l k=Nlk

and the series in (3.3.19) converges in the mean square sense, for

each te]IR.

Now consider the mean square error

2N 2 2
i~IL1Ai~ -- -N

Making use of the convergence of the series in (3.3.19) in quadratic

* mean for each tEIR1, we obtain

NN

- n==-N

N N
I E(x()x())TK(- ~)(t)tT(
n=-N 2W

N N n-Nn

C1 N2

-l'k I [Tk](t) nk(2W)[Tfk - [K-- )

n=N m-Nn

I kITkt~k T - ~f)I TKC' - 2)](
k=1 n--
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We have

NE:ITf, n,[n(
N , k

t ) : [Tfk](t) - t) -
n= -N

0n
f IS(tu)-Iefk(u) - L fk(7)K(u - )jdu-00 n = -N

_ f s t,u)l.IJ k(ve 2 i uv dv

-OD U

N "Ti 3.v

I ( L fkv)e dv)K(u - du
n= -N SO

5 f IS(t,u)l.( f Ifk(v)l'le 7iuv

N 7Tiwv
- (3.3.21) - N e K(u - -,)Idv)du

• n = - N

c ......2ni(v+2nW)u
For every uE 1R define u(V) = 100 -niv+22W)e (Lee,

1978). Then for each uEIR 1, u is a periodic C'-function with Fourier

expansion

in

0 (v)= K(u- c)e
n=-

where the series converges uniformly on - < v < -. We have

-- u - N KrU n W v
s•p ye I K(u e

VEU 0  n=-N

N ni1wV
s sup (v)- I K(u n e
V ERm n=-N

v ]R ' - n---
n WV ~ ~ 71 >NK- _

- s up >N - y)e

IR I.
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I. IK(u- n ,
InI >N

C

and since KCeS implies IK(u)l !5 2 for some C > 0
l+u

1CN(u) < C n : +N
n 1>N +u- )

-< 2C(l+u) 2
Inf>N 1 + (n2

16W2C 2 1< -N-- "Iu ue

From (3.3.21) we thus have,

ENk(t) < f IS(t,u)ICN(u)du f Afk(v)Idv
- U0

N 16wc IU1r f(l+u2 )IS(t,u)Idu

It follows from (3.3.20) that for all tcR',

2^ Io J(16W 2C)2  00 2
SN(t) < 2 ( Xk) f (l+u2) IS(t,u) du * 0 as N co

N k=l --

by property (iii) of S, and thus the series in (3.3.18) converges in

the mean square sense. 0

It should be noted that the integral type operator T was defined

on all feL 2(1Rl) since K J L0(U0 ;V0 ,W). However, one could take the

C1 Omfunction ' (of Remark 3.3.1) equal to zero on Ac for some open set

A such that U c A c VO . In this case KeL0 (A;V0 ,W), and it would

suffice to define the integral type operator T on L0 (A;V0 ,W), rather

than on L2(IR ) (also conditions (i) and (ii) would need the obvious

modifications).
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Under further conditions on the process x, (3.3.15) converges

in quadratic mean for all bounded linear operators.

Theorem 3.3.6. Let x = {x(t), tR1I} be as in Theorem 3.3.5,

and in addition assume that

(i) f (l+t2) -,t) dt <

(ii) t ( + ( )4) /R((A/2W),(n/2W) <

Then if T is any bounded linear operator in L 2(IR ) which maps

L0 (U0 ;V0 ,W) into Lo(Uo;Vo,W), (3.3.15) holds where the series converges

in quadratic mean for every tEIR

Proof. Notice that by (3.3.20) we have

eN(t) 2 T 2 . Aklfk _ n K( - - -, L 2
k=l jnj 2N L (IR)

" ITI2 I Xk f dtlfk(t)I 2 - fk(t) I rf(a)K(t-
I k=l - I nN

- f k(t) Nfk(2n K(t -- n)

kInImNk2W+n ,a-N f k ( -j-n) i '  m EK(t K (t

It follows by (3.3.5) and monotone convergence that

1k=iXk_ fk(t) 2dt = f R(t,t)dt. By (3.3.4) we obtain

-CO -00

f R(tt)(t - dt =E- f x(t)d(t - tx()
-CO -002

= E{[klk _ fk(t)-(t- mdI -
k - k=l
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= ..... T ff(t)K(t - )dt

and thus (3.3.22) can be written as follows:

e2(t) < 1 IT 1 I2 [R(tt) -n R(t, #Z)K(t -
N ~ Inj!N 2WW-

InkN I mmN

(3.2.23) • K(t - ,-n) dt

But by Theorem 3.3.3 we have for every t,sE]R

R(t,s) = R(t, nn)K(s
n=-o

substituting in (3.3.23) we obtain

22(t) _iT12 f INR(t, -)K~t- - }dt
e.()-00 Inj>N 2

00

Ink<N Im>N 2 -

c kSince KES implies IK(t)I - 2) k for each k > 0 and some Ck> 0,

(l+t2)

and IR(t,s)l s A-(-,tT * ATss, we have that the first term on the

right hand side of (3.3.24) is less than

2C, IT I I f ((+t )n/2i)E7t2dt)1 n 0 as N

-00 InI>N 1 + (f2

by (ii). For the second term, notice that
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f IK(t - )IIK(t t -)I 8C 1C 2 [ [] 2 2

n 2 2

-8'C 1 C2  (121

Thus the second term on the right hand side of (3.3.24) is less than

8C C 2 ( ~ 4. n)2Y'((n/2W)(n2Wq)3]

( ~ AT~m2W), m/ 0 as N-c

(Im >N 1 + 2in

by (ii) and the result follows.0

It should be noted that when R(t,t) is asymptotically monotonic

at ~wthen conditions (i) and (ii) of Theorem 3.3.6 may be replaced by

J(l+t 4)AfTE7 d t <

-4.



CHAPTER IV

Sampling Expansions for Distributions and

Random Distributions

4.1. Introduction.

This chapter is concerned with sampling representations for

distributions and random distributions. The need to consider dis-

tributions (beyond classical functions) arises from the fact that in

many physical situations it may be impossible to observe the instan-

taneous values f(t) (of a physical phenomenon) at the various valuesIof t. For instance, if t represents time or a point in space, any

* measuring instrument would merely record the effect that f produces

on it over non-vanishing intervals of time I: ff(t)0(t)dt, where 0
~I

is a "smooth" function representing the measuring instrument, i.e.

the physical phenomenon is specified as a functional rather than a

function. Furthermore, it is becoming exceedingly clear that the

tools and techniques of the theory of distributions are useful in

investigating certain problems in many applied areas. It is thus of

interest to consider distributions beyond functions.

4.2. Notation of Basic Definitions.

Let C' = Cc(IR1 be the class of all infinitely differentiable

functions with compact support. A topology T is introduced on

the linear space C(c which makes it into a complete space: CcD€ n + 0c c n
in T if there exists a compact set AcIR 1 which contains the

support of every Pn' and for every non-negative integer k, k)t)

* 0 uniformly as n -. Co with the topology T is denoted
C
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by D, and its elements are called test functions. The members of the

dual D' of D are called distributions, and the value of a distribution

fEV' at a test function OeD is denoted by f(). A (weak-star) topo-

logy on D' is defined by the seminorms jf(q)I, feD', as varies

over all elements of D; thus, 0t'fn- 0 weakly whenever f n 0 for

all OPc.

The class S of rapidly decreasing functions consists of all

infinitely differentiable functions (ECo ) for which

I tmo (k ) (t ) I < Cm,k ,-o< t < 001

for all non-negative integers m,k. A topology on S is defined by the

seminorms

1101lm,k = sup sup {(l+[tl)kI(n)(t)I} , m,k = 0,1,2,...,
0<n!<m tE Ri

i.e., a sequence {n}n=l is of functions in S is said to converge in S,

if for every set of non-negative integers, the sequence

{(~i (~~k) (tO} co1
(t)1n=l converges uniformly on IR1. S is complete, and

* the dual S' of S is called the class of tempered distributions. Simi-

larly, a (weak-star) topology is defined on S' by the seminorms IfM()I,

fES', as 0 varies over all elements of S, i.e., fn converges in S'

if fn () converges for all OES. The space V'(S') is (weak-star)

sequentially complete, that is, if {f n}n is a sequence in D'(S') such

that {fn ( )}n  is a Cauchy sequence for every OED(S), then there exists

a distribution fcV'(S') such that fn f in D'(S').

Finally, the space Co with the topology defined by the seminorms

) suP l¢ (n) M Il , c C

0An:m tEA

where A ranges over all compact sets in IR and m over all non-negative
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by D, and its elements are called test functions. The members of the

dual D' of D are called distributions, and the value of a distribution

feD' at a test function OED is denoted by f(O). A (weak-star) topo-

logy on D' is defined by the seminorms If(O), ftD', as 0 varies

over all elements of D; thus, D'3f n 0 weakly whenever f (0) - 0 for

all OcD.

The class S of rapidly decreasing functions consists of all

infinitely differentiable functions (OcC ) for which

1(k
I o (1 CmkI_ < t <

i for all non-negative integers m,k. A topology on S is defined by the

seminorms

ih0im,k sup sup {(l+Iti)k10(n)(t)I} m,k = 0,1,2,...,
O!n~m tE R 1

i.e., a sequence 4n }n=l is of functions in S is said to converge in S,

if for every set of non-negative integers, the sequence

(1+tm) (t) converges uniformly on IR1 . S is complete, and

the dual S' of S is called the class of tempered distributions. Simi-

larly, a (weak-star) topology is defined on S' by the seminorms If(O),

EES', as 4 varies over all elements of S, i.e., fn converges in S'

if fn(0) converges for all OES. The space D'(S') is (weak-star)

sequentially complete, that is, if f n)n is a sequence in D'(S') such

that {fn (4)}n  is a Cauchy sequence for every OED(S), then there exists

a distribution fED'(S') such that fn - f in D'(S').

Finally, the space Cm with the topology defined by the seminorms

AP M I supj4¢(n) (t ) l , OECo

Pm'A( Onm tEA

•,',.e I ranges over all compact sets in R1 and m over all non-negative
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integers, is denoted by E.

The Fourier transform F(F(4) = $, ¢S) is a one-to-one bi-
contiiruous mapping from S onto itself. If fES', the Fourier trans-

form f of f is defined by 0(4) = f($), *cS, and is a tempered dis-
tribution. If fcS' and cES, the convolution f*¢ is defined as a

function on IR1 by

(f*)(t) = f(T ) ,t-EIR

where M(t) = (-t) and the shift operator -t is defined by (T 0)(u) -

O(u-t). f*OcC has a polynomial growth and thus determines a tempered

distribution.

Suppose fED', f is said to vanish in an open set UcIR I if f(O) = 0
for every OED with supp({)cU. Let V be the union of all open sets

Uc IR 1 in which f vanishes. The complement of V is the support of f.

Distributions with compact supports are tempered distributions. Now,

if f is a distribution with compact support (i.e., fES'), then f

extends uniquely to a continuous linear functional on E. If 1cD is

such that i(u) = 1 on some open set containing supp(f), then pf = f

i.e. (¢f)(q) = f(00) = f(O) for all *ES, but since et(u) = e2lritu

is a C--function, f(et) = f({et) exists, and the distribution is

generated by the function f(t) defined on ]R by

(4.2.1) ?(t) = f(et)

*, Indeed

(4.2.2) f = (*f) ,

A

and (pf) (and therefore f) is generated by the Cm-function (M)(t)
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which has a polynomial growth (see Rudin, 1973, p. 179). By choosing[ES such that 0 = 4, we have

(f*4 )(t) = (4)(t) = f(tO) = fC(rt ) )

= f(e t) f(pet) = f(et)

and from (4.2.2), (4.2.1) is justified. Hence the Fourier transform

of a distribution with compact support may be thought of as a function

defined on IR by (4.2.1).

Let (Q,F,P) be a probability space. A random distribution is a

continuous linear operator from V (or S) into a topological vector

space of random variables. Specifically, a second order random

distribution is a continuous linear operator from D (or S) onto

L2(0) = L2(Q,F,P), the Hilbert space of all finite second moment

random variables.

4.3. Sampling Expansions for Certain Distributions.

* iIn this section we establish a sampling theorem for tempered

distributions whose Fourier transforms have compact supports. A

distribution fcS' is said to be W-bandlimited, W > 0, if supp(f) c

(-W,W). The class of all W-bandlimited distributions will be denoted

by Bd(w).

Let V[-W,W], W > 0, be the class of all Cm-functions 4 with

supp()) c [-W,W], and define Z(W) - P[-W,W = {4)ES: 4)[cf-W,W]}.

Pfaffelhuber (1971) stated that if HcBd(W) and h is its Fourier trans-

form (defined as a function on JR ), then

(4.3.1) h(t) n h( n sin (2Wt-n),h2) Wt-n) "
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and the series converges absolutely in Z'(W) (the dual of Z(W)).

(4.3.1) means precisely that, for every *cZ(W),

fh(t)o(t)dt =  h(_ n fsin 7r (2Wt-n )
-0 n=- W -,

and the series converges absolutely. Campbell (1968) had already

noted that (4.3.1) does not hold pointwise for arbitrary bandlimited

distributions. Though (4.3.1) is correct, the arguments presented in

its proof are not convincing.

The following lema is a modification of Lemma 1 of Pfaffelhuber

(1971), and will be needed in the proof of theorem 4.3.1.
J

Lemma 4.3.1. Let fES' be such that f has compact support. Let

E be a closed set properly containing supp(f), and q any test function

with support E and 1 = on some open set containing supp(). Then

f is uniquely determined by its restriction to D(E), i.e., the values

f(e), OEV(f), by

(4.3.2) f(O)= f6*0), ES

_ The shift operator T. is defined on V'(S'), for every X IR

by

(T (f) (0) = f(TZt) , *ED(S)

A distribution fcV'(S') is said to be periodic with period T > 0, if

(4.3.3) (TTf) (0) = f(0) , for every eV(S)

and T is the smallest positive number for which (4.3.3) holds.

We now state and prove our result.
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Theorem 4.3.1. Let fES' be a tempered distribution such that

? has compact support, and let the closed set E and W > 0 be such

that E supp(?) and the translates {E+2nW}, n # 0, are disjoint

from supp(f). Let a and ' be any test functions such that ' has

support E, and a = 1, ' = 1 each on some open set containing

supp( ). Then

(4.3.4) f(O) = f(T na)(T r W)() , (ES)

where KW(t) f e2 itu,(u)du and KW(O) = f Kw(t)O(t)dt, 4ES..~~2 whr wt E -00

d
If fEB (W), then*1

(4.3.5) f(4) = . f(T n&)(T nGw)( ,) , ¢ES
n=o

s n2TrWt 2where Gw(t) = iV- , and Gw(4) = f Gw(t))(t)dt , (S.2W Wt f - Wt t~ t OS

Proof. We first show that the sequence of partial sums

Y N NT f-2nW , N _> 1, converges in S'. For any OpES,

N
SN(O) -- - (T-2nWf)(0)

n=-N

N
f(T 2nW4)

n= -N

N

A= N

N
(4.3.6) - f(C J T2nWO)

n, -N

where &EV is a test function such that &(t) 1 on some open set

containing supp(t). We now show that the sequence

... .. ......
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*N(t) = E(t)n=. O(t-2nW), N > 1, converges in S. Since *ES,

there exists a constant B > 0 such that 10(t)l < B(l+t 2) 1 for all

tE]R and thus

B 2lit 2

I(t-2nW)l < B 2 B

I+(t-2nW) i+(2nW)

Since &ED, we have supp( ) c [-C,C] for some C > 0 and IC(t)I i_ A

for some A > 0. It then follows that for all tIR1 and non-negative

integers m,

N(4.3.7) (l+jtj)mj,(t)j I 10(t-2nw~l

n=-N

2AB(I+C)m (I+C2) 1 1 2 <0

n=-- i+(2nW)2

i.e., the sequence of partial sums on the left hand side of (4.3.7)

1
converges uniformly on IRI  Hence the sequence (l+jtj)mON(t) , N >_ 1,

converges uniformly on IR for every m 0. Similarly, it can be

shown that for every m,k -> 0, the sequence (l+ItI)mNk)(t), N 1,

converges uniformly on R 1, i.e. ftN , Nal, converges in S, and since S

is complete, its limit 0 belongs to S, and 0N - 0 in S. It follows

from (4.3.6) that

SO) = (ON) - f(O) , as N . G

and since S' is (weak-star) sequentially complete, then there exists

a tempered distribution FES' such that SN - F in S'.

Therefore, F = lim SN = -2nW is a periodic tempered

distribution with period 2W. It follows that F has the Schwartz-

Fourier series (Zemanian, 1965, p. 332)
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(4.3.8) F= .2nWf an e n inS'
n= - n=2- -W

where et(u) e 2itu , and

a n F(Ue n

where UEU 2W is a unitary function (Zemanian, 1965, p. 315), i.e.

w1UEV and 1n_ U(t-2nW) = 1 for all tEIR1 . From (4.3.8) we have

2Wan-- [ (r 2mW )(He n
n---

n 2of( mU]e n)

m -Go2W

Since f has a compact support and UEV, then there is only a finite

number of non-zero terms in the last sumation, and hence

2W a n= f([ ,2rwU]e n)2 m=-O - 2-

(4.3.9) =f(e n) = f(ae n) f(r na)

-W -N " --

From (4.3.8) and (4.3.9), we have that
Co

(4.3.10) f(6) = TW f(T na)e n(0) , 86E(E)
i n

W- n

where e n(8) f e su T

(4.3.11) f() = () - 2 f(T n) )6 2) , OV(E) ,
n2W
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and by Lemnma 4.3.1 we have that for every .eS

1n

(4.3.12) fO) =f{*Oc€) = N X f(T n&){i*€)(2n=- 2-WW
2W

V

(since *O = ( p)A C D(E)). But
00

n6*0)( f O(TW- t)o(t)dt

00

2W f Kw(t - T)O(t)dt
-CO

(4.3.13) - 2W(T nKW)({) , OES
2W

and (4.3.4) follows from (4.3.12) and (4.3.13).

To prove (4.3.5) notice that when OEV[-W,W],

e nCO) = f e O(u)du
2W -W

w sin 7(12Wt~n t)dt
2W-w (2Wt+n)

=2W(T nGW,)(e)

It follows from (4.3.10) that for ECV[-W,W],

f(O) = f(O) = f(n nG)

and (4.3.5) follows by Lemma 4.3.1. 0

Theorem 4.3.1 shows that a tempered distribution f with compact

spectrum can be reconstructed via (4.3.4) from its values (samples)

at the translates of an arbitrary but fixed test function a which

* I
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equals one on some open set containing supp(?). On the other hand,

if we denote ?(et) by f(t), then from (4.3.9) we have
A l

f(T na ) - f(e ) = f(-), and (4.3.4) reads
2W TW

00f() = f()(T nw ) ( ) , ES

n=-c --

so that a tempered distribution f with compact spectrum can be recon-

structed using the samples of the function f(t) = f(et).

We now show that the sampling theorem for tempered distributions

with compact spectrum includes as special cases the sampling theorems

for conventionally bandlimited functions (Example 4.3.1) as well as

for bandlimited functions in L2 (ik) (Example 4.3.2).

Example 4.3.1. (Conventionally bandlimited functions). Let
fEL 2 (IR1 ) be a continuous function such that f has compact support

E. Then f determines a tempered distribution:

(4.3.14) f(¢) = f f(t)¢(t)dt , ¢eS

* and its distributional Fourier transform (denoted also by f) is

defined by f(o) = f(O), OcS, or equivalently by

fCo) = f f(u)O(u)du , OeS
-CO

f(as a tempered distribution) is supported by E. Hence (4.3.4)

applies and, if W > 0 is defined as in Theorem 4.3.1, we have from

(4.3.14)

nn W *~*7T i 'Uf(T na )  = ie ne W ~~ du =f(2-n)

-2W -2W -
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For v > 0, define the function

Cj exp{---.. for, IN : 1ct%(t) ={1-(

M o for I1 > 1,

where C f exp{-- }dt. For each v > O, 4d eDand f (t)dt= 1,

and for each continuous function g and every tEIR 1,

00

f g(u)¢V(t-u)du - g(t) as v+0. From (4.3.4) we thus have that
-001

for each tE IR and v > 0

n n

(4.3.15) f f(u)Pv(t-u)dt I f(t) f Ki(u-)Ov(t-u)du

Since f and KW are uniformly continuous, we have for each fixed tEIR1

and nEIN

f f(u)P (t-u)du - f(t) as v+0
-00

00

f KW(u _),(tu)du Kw(t n)

Now by Theorem 24 of Lighthill (1958, p. 64), if for any sequence
00

{bn} which is O(n) as n 00, 1 b a is absolutely convergent
n n=-,w n n,v

and tends to a finite limit as v - 0, then

iW 00
(4.3.16) lim I a = X lim a

*v. 0 n=-n n=mvO

But, for each fixed tc]R
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n=-n
Jjb n f( f Kw (u - t) (t -u)du[

2kCk4 I In(f kJ} fo (1+u2 )k (t-u)du

- k C (l+t 2) -. (nJ
v0 kn=-- (1+ ) k

since f is bounded,lbn 15 Bin!, and for k > 1,

SC)k kC (l+u 2) k
(l+(u n2k :5 n 2k

It follows that the right hand side of (4.3.15) satisfies the condi-

tions leading to (4.3.16), and hence by letting v+O, we obtain

*11

(4.3.17) f(t) = ( (n)Kw(t - t) t~ I ,
i n= -o

which is the sampling theorem for a conventionally bandlimited func-

tion with compact spectrum. 2

Example 4.3.2. (Bandlimited functions in L2(1k)). Let fL2(Ik ) '

k :? 0 , be a continuous function. Then f determines a tempered dis-

tribution by (4.3.14). If its distributional Fourier transform f

has a compact support, then (4.3.4) applies and we have

f(T a) f(e ) (Z)
n n 2T-W TW

(see Lee, 1979). Since f is a Coo-function and Jf(t)j 5 Ck(l+ItI)k,

for constant Ck > 0 (Lee, 1977), then (4.3.15) holds and following
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the arguments used in Example 4.3.1, we obtain (4.3.17) which is

similar to (3.2.3) and is identical to (3.2.4). It should be noted,

though, that (4.3.4) cannot be obtained from Campbell's result

(Theorem 3.2.4), since the convergence in (3.2.4) is not uniform

on compact sets.

4.4. Sampling Expansions for Random Distributions.

In this section sampling expansions for stationary random distri-

butions are considered. Let X =' {((4), 4ES} be a second order random

distribution. X is said to be weakly stationary, if for every h > 0

and p,qES,

E (ThX( ).ThX ( )) =E(X( ) • X( ))

If X is a weakly stationary random distribution (WSRD), then there

exists a unique tempered distribution pES' such that for every 4,IES,

(4.4.1) R(O,) E(X(O) •X(p)) = p{¢, )

where 1(t) = ip(-t) (Ito, 19S4), and p has the spectral representation

(4.4.2) p(c) = f ,(u)dp(u) ,

where p is a non-negative measure on IR 1 such that r dP(U)
-~(l+u )

for some integer k. In this case X is said to be of type k, and p

is called the spectral measure of X.

Let B* be the set of all Borel sets with finite p-measure. An

* 2
L (2{)-valued function Z defined on B* is called a random measure with

respect to P if

I: j _____ ____



87

E(Z(B1).Z(B 2)) = i(BlnB2) , B EB*

2) 2

Hence E(Z 2(B)) -- (B), and Z(B1) -L Z(B2) if B1 and B2 are disjoint.

Since p is a-additive, then Z(B) = Jn__lZ(Bn), whenever B1,B

are disjoint sets in 5* with Un= Bn = B. It follows by (4.4.1)n=l

and (4.4.2) that there exists a random measure Z with respect to vi

such that
00

X() = J 4(u)dZ(u) , PES
-00

If H(X) is the linear subspace of L2(S() generated by {X(O),OES}, then

H(X) and L2(i() are isometrically isomorphic under the correspondence

X(Mp)-> $, OES. A WSRD X is said to be W0-bandlimited, W0 > 0, if

[-Wo,W o  
0. 

0

Theorem 4.4.1. (a) If X = (X(4), 4ES} is a W0-bandlimited WSRD,

W > W0 , ctED and *ED[-W,W] with a(t) = I = (t) on [-W0,W0 ], then for

every 0,ES,

'1O

(4.4.3) X(O) jX( n. ) ( T nGW) ("0 )

n= -oo

si 2Wt

in mean-square, where GW(O) = f 2Wt o(t)dt.

(b) Let X = {X(O), 0.S} be a WSRD with spectral measure Vi which

has compact support. Let the closed set E and W > 0 be such that

E D supp(p) and the translates {E+2nW} , n # 0, are disjoint from

supp(p). Let a and be any test functions such that ' has support

E, and a(t) = 1 = '(t) on supp(p). Then
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(4.4.4) X6€) = xTr na) CT n)) , 4ES
n=-w 2- 2W

in mean-square, where Kw(t) = -- f *(u)e 2TitUdu.
2WE

Proof. To prove (a), first let *ES be such that $VD[-W,W].
The 4(u= OO 0

.Then n(u) = n_ (u+2nW) is a C -function which is periodic with

period 2W and has the Fourier series,

(4.4.5) 2(u) = u c( -)e , uEIR'l n=-

which converges uniformly on JR1. Since OED[-W,WJ,

(T =r sin n(2Wt-n) 0(t)dtTn1q)¢ _0 IT(2Wt-n)

T i n1

T1 fe 0(u)du
-W

2W

we have for the mean square error

2 N 12

eN(0) = EIX(O) - I XT na)(' nGW)(0)I
n=-N 2W 2W

(u)  N nTi nu2
f u C-) e d- e(u)

.1 -W 0  n=-N

There exists a constant M > 0 such that for all N and uEIR ,

u n W

n= -N 2 ~
n

N I n TiW u
Since, by (4.4.5), Jn=_N 2W O{t)e converges to O(u) on2
[-W0,W0], by the dominated convergence theorem, eN(0) - 0 as N -.
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Thus for every C,([-W,W], we have

(4.4.6) X(M) = •r (T (
n=-- n 2

Now for every OeS and 0 as in part (a) of the statement of

the theorem, we have

WO W0
x(O) = f $(u)dZ(u) = f (u)$(u)dZ(u)

-WO -WO

w 0
(4.4.7) = f (p*,)^(u)dZ(u) =

-WO

V

where '*= (IP) eP[-W,W], and (4.4.3) follows from (4.4.6) and (4.4.7).

The proof of part (b) is similar to that of (a) with the obvious modifi-

cation and hence is omitted. [

It should be noted that, since a = 1 on [-WOWO]
WO0 - 7i Ru

*2W
X('r n a) = f e C (u) , ne IN.

2W -Wo

If we define

W0 1

x(t) =f e-2itUdZ(u) , tIR 1

-WO

then {x(t), t-ER is a weakly stationary W0 -bandlimited stochastic
process, X(T n&) - x(.), and (4.4.3) reads

2W
O

(4.4.8) x(*) n x(i n Gw)O*,) , *cS
no Go
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i.e., the random distribution X is reconstructed using the samples
of the ordinary stochastic process x. Hence there is a oe-to-one

correspondence between W0 -bandlimited weakly stationary random dis-

tributions X and W0-bandlimited weakly stationary processes x deter-
= W0 1 21ritumined by X( ) f W0(u)dZ(u) and x(t) = f e dZ(u) and satisfying

(4.4.8).

We now show that the sampling theorem for bandlimited weakly

stationary random distributions includes as a particular case the

sampling theorem for bandlimited weakly stationary processes.

Example 4.4.1. Let x = {x(t), tcIR 1 } be a measurable, mean-square

continuous, weakly stationary process which is W0 -bandlimited, i.e.,

WO
(4.4.9) x(t) = f e- itUdZ(u)

-Wo

where Z is a random measure with respect to the spectral measure ji of

x with pf{[ -W0 ,W0 ]c} = 0. Then x determines a W0-bandlimited WSRD by
W0^

X() = f $(u)dZ(u) , *eS
-Wo

which can also be written asi 0 -27ritu(t

X( ) = f ( f e" (t)dt)dZ(u)
-W -

t0

=f x(t)*"(t)dt,

where the latter integral exists both with probability one as well

as in quadratic mean. Then by (4.4.4) we have for each tIR1 andi~ 0,v>O
I J
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(4.4.10) f x(u)* V (t-u)du = § x(t-I Kwu
-~n=- _00

in quadratic mean. As in Example 4.3.1,

f x(u)OV (t-u)du -~ x(t) as v+0

in quadratic mean, f KW$u -)Q(t-u)du + K.#(t -;;2) as v40, and

the right hand side of (4.4.10) converges in quadratic mean to

~x(7,)KW(t - 4.We thus obtain

xi n

in quadratic mean.
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